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Abstract

Accurate building height estimation is essential to support urbanization mon-
itoring, environmental impact analysis and sustainable urban planning. How-
ever, conducting large-scale building height estimation is a challenging task.
While Deep Learning (DL) has proven effective for large-scale mapping, the
lack of advanced DL models specifically tailored for height estimation remains
a challenge, particularly when using open source Earth Observation data. In
this study, we propose an advanced DL model (T-SwinUNet) for large-scale
building height estimation leveraging Sentinel-1 Synthetic Aperture Radar
and Sentinel-2 MultiSpectral Instrument time series. In the proposed T-
SwinUNet, the semantic feature learning capabilities of the efficientnet en-
coder are combined with the local/global feature comprehension capabilities
of Swin transformers. A temporal attention module is added to learn the cor-
relation between constant and variable features of building objects over time
which not only helps in differentiating building objects from the surroundings
but also in learning salient features for building height estimation. The model
is trained on a multi-task to predict both building height and footprint at 10
m spatial resolution. The model is evaluated on data from the Netherlands,
Switzerland, Estonia, and Germany. The extensive evaluation and compar-
ison with state-of-the-art DL models show that our proposed T-SwinUNet
model yields Root Mean Square Error (RMSE) of 1.89 m, surpassing the
state-of-the-art at 10m spatial resolution. Further assessment at 100 m res-
olution shows that our predicted building heights (0.29 m RMSE, 0.75 R2)
also outperformed the global building height product GHSL-Built-H R2023A
product(0.56 m RMSE and 0.37 R2). Our implementation is available at:
https://github.com/RituYadav92/Building-Height-Estimation
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1. Introduction1

More than half of the world’s population currently lives in cities. By2

2050, an estimated 7 out of 10 people will likely live in urban areas. While3

cities contribute more than 80% of global GDP they are also accountable4

for major energy consumption and carbon emission [UN, 2022]. Therefore,5

urbanization monitoring is essential to support sustainable development. In6

the last decade, 2-dimensional (2D) urban monitoring such as building foot-7

print extraction has received considerable attention and resulted in many8

high-resolution and global products [Li et al., 2020b, Marconcini et al., 2021,9

Hafner et al., 2022, Huang et al., 2022b, Hu et al., 2023, Chen et al., 2023b].10

Despite being the essential component of urbanization, the third dimension11

(3D) or height has not been equally investigated. There are relatively few12

studies on building height estimation, and most of them focus only on a few13

sites, e.g. [Huang et al., 2020, Liu et al., 2022, Yadav et al., 2022, Chen et al.,14

2023a, Dong et al., 2024]. Accurate estimation of building height plays an15

important role in urban planning, as it is correlated with transportation,16

telecommunications, energy consumption [Marconcini et al., 2020], popula-17

tion [Leichtle et al., 2019], urban heat island effect [Wu et al., 2022], and18

urban climate [Xi et al., 2021] and is also one of the key parameters in their19

quantification.20

While airborne laser scanning (ALS) and high-resolution aerial images21

offer detailed information ideal for accurate building height estimation, es-22

pecially in dense urban areas, they are not suitable for large-scale mapping23

due to their high cost and time-consuming data collection processes [Cao24

and Huang, 2021, Liu et al., 2022]. Earth observation, on the other hand,25

is an effective and promising tool for large-scale mapping and monitoring.26

Although some studies have explored building height estimation using very27

high-resolution satellite images [Recla and Schmitt, 2022, Liu et al., 2022,28

Chen et al., 2023a], the restricted accessibility of their data sources limits29

scalability for large-scale applications.30

In contrast, satellite missions such as Sentinel-1 and Sentinel-2 provide31

open access to global SAR and optical data free of cost. Their frequent re-32

visit cycles coupled with a spatial resolution of 10 meters (m) and open data33
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access, not only make them suitable candidates for large-scale 3D mapping34

but also allow for frequent update cycles. In recent years, several studies35

have tried to fill this gap and estimate building heights using these free-of-36

cost satellite imagery. For example, [Li et al., 2020c] proposed to estimate37

building height using Sentinel-1 SAR data. The authors developed a new38

VVH indicator, which was evaluated in seven major cities in the US to esti-39

mate building heights at 500m resolution with RMSE of 1.5 m. In general,40

Sentinel-1 SAR is useful for estimating building height, as there is a posi-41

tive correlation between the derived backscatter coefficient and the height of42

the buildings [Koppel et al., 2017]. However, apart from building height, the43

backscatter coefficient can be influenced by other factors adding uncertainties44

to the estimate [Li et al., 2020c]. These factors can be a metal surface with45

high reflectivity, certain types of building structure that cause double bounc-46

ing [Li et al., 2016], scattering variation from the tree canopy and building47

density [Corbane et al., 2008]. Adding optical data in the height estimation48

process helps to overcome some of these factors, for example, [Li et al., 2020a]49

proposed using Sentinel-1 SAR and optical data from Landsat-8 OLI incorpo-50

rating auxiliary data (OSM, cadastral data and commercial maps). The au-51

thors estimated building height at the continental scale by applying a random52

forest model. However, the model overestimated the heights of small build-53

ings and the coarse spatial resolution of 1 Km made it impossible to examine54

height differences in various building structures. Both resolution and scale55

are improved by the GHSL-Built-H R2023A product [Pesaresi et al., 2021],56

providing global building height at 100 m spatial resolution. The building57

height is derived using a regression method on multiple statistics calculated58

from ALOS Global Digital Surface Model - 30 m, the NASA Shuttle Radar59

Topographic Mission data - 30 m, and the Sentinel-2 MSI global pixel-based60

image composite from L1C data for the period 2017-2018. The estimations61

are referred to the year 2018. The resolution is further improved by [Esch62

et al., 2022], where the global scale building height is estimated at 90 m res-63

olution extending the World Settlement Footprint (WFS) [Marconcini et al.,64

2021] to 3D. The estimated building heights have been validated showing a65

promising accuracy with an RMSE of 6.01 m.66

Meanwhile, [Huang et al., 2022a] estimated building heights in China at67

a better spatial resolution of 30 m, achieving a RMSE of 4.98 m. However,68

it is worth noting that both [Esch et al., 2022] and [Huang et al., 2022a]69

rely on commercial DSMs collected by the TanDEM-X and ALOS missions,70

respectively, which require processing stereo satellite image pair, making it a71
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complex and expensive process thereby frequent updation of building height72

can be challenging. The spatial resolution of building height estimation maps73

is further improved to 10 m by [Frantz et al., 2021], where the authors pro-74

posed using the change in the length of building shadows with each month.75

They derived an exhaustive number of spatial, spectral and temporal statis-76

tical features along with several handcrafted features from Sentinel-1 SAR77

and Sentinel-2 MSI time series data and trained a support vector machine78

regression model to predict building height. This approach was tested in five79

major areas in Germany and the derived building heights show an RMSE of80

6.07 m. Another recent study by [Wu et al., 2023] focused on estimating81

building heights in China at 10m resolution. They adopted a combined ap-82

proach that integrated elements from both [Li et al., 2020a] and [Frantz et al.,83

2021], supplementing their methodology with additional data sources such as84

ALOS PALSAR, LUOJIA 1–01, WFS footprints, and DEM data. Although85

this study resulted in a similar RMSE of 6.1 m, comparable to that of [Frantz86

et al., 2021], it operated in more complex urban regions characterized by a87

wider distribution of high-rise buildings. [Dong et al., 2024] also estimated88

building height in a complex urban area of Hangzhou, China, combining in-89

dices from Sentinel-1/2 and a physical model where several statistics, such90

as the orientation angle of the building, number of vertices, the distance91

from neighboring buildings, the road, and many others are calculated based92

on prior ground-based knowledge. They trained an XGBoost model with93

these features, achieving an RMSE of 6.64 m at the individual building level.94

However, the method relies on prior ground-based knowledge, which poses95

challenges for large-scale applications.96

In the last decade, compared to machine learning algorithms, DL models97

became popular in remote sensing due to their powerful discriminative ability98

and rich representation learning [Asokan and Anitha, 2019]. The approaches99

mentioned above use machine learning algorithms with handcrafted features,100

which often have limitations in capturing the complex and high-dimensional101

nature of remote sensing data. In contrast, DL models can directly learn102

from raw features without relying on handcrafted ones [Zhou et al., 2018,103

Yan et al., 2020]. For instance, [Cai et al., 2023] proposed a dual branch DL104

network (BHE-Net) that outputs building footprints majorly using Sentinel-105

1 SAR in one branch and building height using Sentinel-2 MSI in the second106

branch. The outputs are then combined to estimate building height at 10107

m spatial resolution. Their model was evaluated in three regions of China108

and the results show an RMSE of 4.65 m. Meanwhile, [Yadav et al., 2023]109
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developed another deep fusion network (MBHR-Net) and proposed using110

time series data of Sentinel-1 SAR and Sentinel-2 MSI data. The model was111

evaluated across ten cities of Netherlands and exhibited an RMSE of 3.73112

m. Although [Yadav et al., 2023] used time series data, the model did not113

utilize the spatio-temporal features of the time series as they considered the114

time series images as augmented images with different seasonal effects. A115

more advanced DL model is required to exploit spectral and spatio-temporal116

features of rich SAR and MSI time series. Furthermore, the scale of the117

studies can be improved by including available training data from different118

countries.119

Given the gaps, we propose T-SwinUNet model, which utilizes free Sentinel-120

1 SAR and Sentinel-2 MSI data to achieve scalability and frequent update121

cycle. We propose using time series data to learn from the temporal corre-122

lation of the features, as it can differentiate between the building and sur-123

roundings while capturing height features like building shadow over time.124

Our T-SwinUNet model is embedded with temporal attention and window125

based multi-head attention to efficiently learn salient spatial, spectral and126

temporal features. The proposed model improved building height estimation127

accuracy, and application scale at fine spatial resolution. The main contri-128

butions of this work are summarized as follows:129

• We proposed T-SwinUNet, a novel model that integrates fine-grained130

pattern capturing capabilities of efficientnet with temporal attention to131

extract spatio-temporal features of multimodal time series data. The132

model is further integrated with the brilliant global/local feature learn-133

ing abilities of Swin Transformer.134

• We introduced a multitask decoder that takes advantage of the com-135

plementary tasks of building height estimation and footprint segmen-136

tation. The model not only learns two tasks simultaneously, but also137

improves overall performance through a consistency loss.138

• We conducted comprehensive experiments and ablation to demonstrate139

the contribution of different parts of the proposed model. The results140

show that our proposed model achieved state-of-the-art building height141

estimation results at 10 m spatial resolution and also outperformed142

GHSL-Built-H R2023A, a global building height product at 100 m spa-143

tial resolution.144
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• We demonstrate that merging predicted building heights with exist-145

ing building footprints yields precise instance-level building height es-146

timates achieving an improved RMSE of 1.60 m.147

2. Study Area and Data Collection148

This study is conducted on building data across four countries, Nether-149

lands, Switzerland, Estonia and parts of Germany i.e., Hamburg, Branden-150

burg, Sachsen and North Rhine-Westphalia. The defined training and test151

areas are shown in Figure 1. The test areas are kept separate to perform un-

Netherlands (NLD)

Training Site

Test Data

Switzerland (CHE) Germany (DE)

Estonia (EST)

Figure 1: Study site map (CRS 3035)

152

biased evaluation. Our dataset comprehensively covers these areas, encom-153

passing not only dense buildings in major cities but also sparsely distributed154

buildings in rural regions. It is worth noting that the urbanization patterns155

in Switzerland and Estonia are heterogeneous. Therefore, for these countries,156
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test areas were selected to represent a mix of dense cities and sparse rural set-157

tlements. In Germany, the test areas span Brandenburg and Sachsen states,158

where urban density varies, yet many cities are densely populated. Given159

the relatively consistent urbanization density in the Netherlands, a random160

area (Groningen province) was chosen as the test area. The specific statistics161

on train and test areas are provided in Figure 3 and explained later in data162

filtering and splits 2.3 subsection.163

In both the training and test sites, random patches of size 1280 m× 1280164

m are sampled using the area random sampling method. These patches165

are sampled with a 20% overlap to ensure comprehensive coverage. Data166

collection involves gathering reference data which contains building heights167

and building footprints and input data which contains Sentinel-1 SAR, and168

Sentinel-2 MSI time series data. Both reference and input data are col-169

lected for each sample patch. While reference data are sourced from multiple170

providers listed in Table 1, Sentinel-1 SAR and Sentinel-2 MSI data are col-171

lected through the Google Earth Engine Python API. The entire dataset172

adheres to the European terrestrial reference system EPSG:3035, and all173

data sources are publicly available at no cost. Figure 2 illustrates our data174

collection process.175

2.1. Reference Data176

The building Height references provided at the sources(Table 1) are de-177

rived from either aerial stereo images or airborne LiDAR data collected over178

many years. These references include the height of each individual building.

Table 1: Reference data specifications.

Site Year Sensors Resolution #Patches(train+test) Data Provider
Netherlands 2014-19 ALS 2m 14835, 1440 TUDelft3d
Germany 2018-21 Stereo Aerial Photo, ALS 1m 8278, 1794 German State Government

Switzerland 2018-21 Stereo Aerial Photo <1m 12735, 1623 Swiss Federal Office of Topography
Estonia 2017-20 ALS 1m 6314, 620 Estonian Land Board

179

The reference building heights for all four sites are available at 1 to 2 m180

spatial resolution. We collected the reference data for all sampled patches,181

given that each patch has a minimum of 10 buildings. This filtering process182

helps to avoid numerous patches with rare to no buildings, resulting in a183

more balanced dataset.184
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Satellite Data Google Earth Engine

Spatial & Temporal filtering
(1-year data)

Sentinel-1 C band
SAR imagery

Sentinel-2 C MSI L2A
BOA imagery

Reference Data

Airborne LiDAR
Survey

Reference Building
Heights

Vector to Raster
conversion 

Binarize

Ascending and Descending
(VV, VH) monthly

temporal averaging

Reprojection and registration
to reference

Spatial & Temporal filtering
(1-year data)

Pixels-wise cloud probability
mask 

(Sentinel-2 cloud-detector)

Less-cloudy monthly image

Reprojection and registration
to reference

S1 monthly images
(12 x 4bands x 128x128)

S2 monthly less-cloudy img
(12 x 11bands x 128 x 128)

BHE Reference (128  x 128)
Resampled to 10m

Sampling Strategy 

Area Random Sampling (128 x 128)

Collection of 3D Buildings
(LOD1)

BF Reference (128  x 128)
Resampled to 10m

Figure 2: Data Collection Framework.

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4762421

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



2.2. Sentinel-1 SAR and Sentinel-2 MSI Time Series Data185

The input data used in this study consists of time series data from186

Sentinel-1 SAR ground range detected and Sentinel-2 MSI Level-2A. These187

two Copernicus Sentinel missions provide free data with global coverage. The188

data is useful for large-scale analysis because of their ability to acquire images189

with large swaths and at good temporal resolution. For each reference patch,190

12 Sentinel-1 SAR images (one image for each month) and 12 Sentinel-2 MSI191

images are collected, all at 10-meter resolution. The year of Sentinel-1 SAR192

and Sentinel-2 MSI data for each site is based on the acquisition year of the193

corresponding reference data (see Table 1). For the Netherlands, Estonia and194

Germany we chose 2019 while for Switzerland the Sentinel-1 SAR, Sentinel-2195

MSI data from the year 2021 was collected. After automatic preprocessing196

i.e. thermal noise removal, radiometric calibration, and terrain correction,197

the monthly average is computed for both ascending and descending or-198

bits, which helps in reducing the speckle. The data is downloaded with 4199

bands i.e. VV and VH polarizations for both orbits. The Sentinel-2 MSI200

data undergoes radiometric calibration and atmospheric correction to pro-201

duce Bottom-Of-Atmosphere (BOA) reflectance data. Then the monthly less202

cloudy composites are generated and the data is downloaded with 5 bands203

i.e. Band 2 (blue), Band 3 (green), Band 4 (red), Band 8 (near-infrared),204

and Band 12 (short-wave-infrared).205

2.3. Data Processing and splits206

The reference building height maps collected from the source consist of207

continuous values starting from zero. Since it is improbable to have a building208

with less than 1.0 m of height, we adjusted any values below 1.0 m to zero.209

Subsequently, the building footprint references were generated by binarizing210

the building height maps with a threshold of 1.0 m. Both building height211

and footprint references were then resampled to a spatial resolution of 10 m212

using an inter-area resampling technique. Also, the backscatter of Sentinel-1213

SAR and the reflectance values of Sentinel-2 MSI bands are normalized using214

2 and 98 percentiles computed over all data samples. The total number of215

train and test samples per site are specified in Table 1. The train patches are216

further split into train and validation sets using 80/20 splits. The test set was217

kept separate from the training process. The distributions of the reference218

building heights across the train and test sets are compared in Figure 3. The219

first histogram displays the distribution of reference heights across all sites,220
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while the subsequent four histograms illustrate the distribution for individual221

sites.

# 
Bu

ild
in

g 
Pi

xe
ls

Height (m) Height (m)

Height (m)

# 
Bu

ild
in

g 
Pi

xe
ls

Train+Val (4.62, 3.93) Train+Val (4.77, 3.97) Train+Val (4.26, 3.90)

Train+Val (4.64, 3.64) Train+Val (4.86, 5.18)

Test (4.52, 3.92)

Test (4.64, 3.27) Test (4.59, 3.77)

Test (4.63, 4.35)Test (4.12, 3.54)

Netherland Germany

Switzerland Estonia

All Sites

Figure 3: Normalized histograms to show the distribution of building height reference
on each site. The values in the legend are the mean and standard deviation of train +
validation data and test data respectively.

222

3. Methodology223

To estimate building height, a deep multi-task supervised model is em-224

ployed that takes coregistered Sentinel-1 SAR and Sentinel-2 MSI time series225

images as input, and outputs building height along with building footprints.226

While the model can be focused on only one task of building height esti-227

mation, the complementary task of building footprint segmentation, i.e. the228

existence of a building or no building, is helpful to avoid height estimations229

of non-building objects. Figure 4 depicts the network architecture of the230

proposed Temporally attentive and Swin transformer enhanced dual task231

UNet model named as T-SwinUNet. The following subsections explain232

the architecture, training and implementation details of the network.233

3.1. Network Architecture234

The proposed network, T-SwinUNet, follows an encoder-decoder struc-235

ture where the decoder is composed of two branches, a regression branch236
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to estimate building heights and a segmentation branch to predict building237

footprints. Network input is a time series of co-registered Sentinel-1 SAR238

and Sentinel-2 MSI images representing the same geographical area. The239

input has dimension xεRt×H×W×C , where H ×W ×C represents the spatial240

resolution and t represents the temporal range of the input.

{

t = nt = 1 t = 2

H
 x

 W
 x

 C

t = 1 t = 2 t = n

Shared Encoder

Temporal Attention

S1
S2

Patch Embed

Temporal
Attention

Segmentation
Head 2

Building Height Building Footprint

Temporal
Attention

Regression
Head

H x 
W x 

2

H x 
W

H x 
W x 

64

H/2 x W/2 x 64

H
id

de
n 

fe
at

ur
es

H/16 x H/16 x 64 x 96

H/8 x H/8 x 128 x 48
Downsample + 

Convolutional Block
Upsample    +  

Convolutional Block 

H
/4

 x
 H

/4
 x

 1
28

H/4 x H/4 x 128

Reshape

Conv2D

Segmentation
Head 1

Building Footprint

H x 
W x 

2

H x 
W x 

64

Consistency 

{

L1

L2

L3
n

Patch Merging

Swin Transformer
Block x 2

Figure 4: The proposed T-SwinUNet for building height estimation and footprint segmen-
tation.

241

The input is fed into a shared efficientnet-B4 encoder that processes242

the time series input with an effective compound scaling that captures fine-243

grained features [Tan and Le, 2019]. The output features are extracted at244

three stages or levels (iεL1, L2, L3) at resolutions H ×W × 64, H
2
× W

2
× 64,245

and H
4
×W

4
×128. At each resolution level, we get n = 12 sets of features corre-246

sponding to 12 time stamps. A temporal attention module is applied at each247

level to correlate temporal features across time stamps. To implement tem-248

poral attention, We used a multi-head self-attention based module proposed249

in L-TAE (Lightweight-Temporal Attention Encoder) [Garnot and Landrieu,250

2020]. The module generates an attention mask of input shape. The input251

features from the encoder are multiplied by the generated attention mask252

and added along the temporal dimension. After temporal attention on the253

third stage (L3) output features of the shared encoder, the output features254
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are of size H
4
× W

4
× 128. A patch embedding layer is applied to generate 3D255

tokens which are then mapped to latent embedding space of size D = 48.256

With window size [7, 7, 7], patch size [2, 2, 2] and number of heads [3, 6],257

two consecutive Swin transformer blocks [Liu et al., 2021] are employed to258

apply multi-head attention with the shifted window technique. After each259

Swin transformer block a patch merging layer is applied to downsample the260

output by a factor of 2. A patch merging layer concatenates the 2x2 neigh-261

boring patches and applies a linear layer on top. The output hidden features262

are upsampled, concatenated, reshaped and fed into the upsampling decoder.263

The decoder contains two branches, the first branch outputs building264

height as well as building footprints whereas the second branch outputs only265

building footprints. Both branches process features in three levels as follows.266

At each level (Lε1, 2, 3), the output features from the encoder are enhanced267

through temporal attention and concatenated with the same level features268

of the decoder through skip connection. After each concatenation, a convo-269

lutional block is applied followed by the convolutional transpose layer that270

upsamples the features by a factor of two.271

At the end of the first decoder branch, a regression head and a segmen-272

tation head (segmentation head1) are applied which are convolutional layers273

with one and two output channels respectively. The regression head is fol-274

lowed by a relu and the segmentation head by a sigmoid activation function.275

The outputs of the first branch are one building height map and one building276

footprint map each of size H×W . At the end of the second decoder branch,277

a segmentation head (segmentation head2) similar to the first branch is ap-278

plied followed by a sigmoid function. The output from the second branch279

is a building footprint map of size H × W . A consistency is maintained280

between the building footprint outputs from the two branches so that the281

second branch can guide the first branch to efficiently learn the presence or282

absence of the building and avoid estimating height of non-building objects.283

3.2. Training284

The network is trained using a supervised regression loss (Lreg), two su-285

pervised segmentation losses (Lseg, Lrseg) and a unsupervised consistency286

loss (Lconsis). The regression loss Lreg is used to train the model for build-287

ing height regression task. The loss contains an RMSE loss to calculate the288

loss over all pixels (Lrmse) and an RMSE loss specific to nonzero label pixels289
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(Lnz rmse). The regression loss is expressed as follows :290

Lreg = 0.5 ∗ Lrmse + 0.5 ∗ Lnz rmse

where, Lrmse =

√∑n
i=1(Ĥi −Hi)2

n

(1)

Here Ĥi is the reference height value at pixel i and Hi is the corresponding291

predicted height. The two supervised segmentation losses (Lseg, Lrseg) are292

used to train the model for building footprint segmentation tasks. Both Lseg293

and Lrseg are composed of dice loss (Ldice) Sudre et al. [2017] and focal loss294

(Lfocal) Lin et al. [2017] given as follows :295

Lseg = Ldice + Lfocal

Lrseg = Ldice + Lfocal

where, Ldice = 1− 2F̂F

F̂ + F
,

Lfocal = −(1− p)foclog(p)

(2)

Here F̂ is the reference segmentation class, F is the predicted segmentation296

class, p is the class probability and foc is the focusing parameter. Finally,297

an unsupervised consistency loss (Lconsis) is used to maintain consistency298

between the two building footprint segmentation outputs. The loss is imple-299

mented as well known IoU (Intersection over Union) loss between the two300

segmentation outputs. The following equation gives the combined objective301

function (Lobj), where α, β, and γ, are the weight parameters for the four302

losses.303

Lobj = α ∗ Lreg + β ∗ Lrseg + β ∗ Lseg + γ ∗ Lconsis (3)

3.3. Implementation Details304

The time series was augmented by introducing a random channel drop305

(noise) with a probability of 0.2. The added noise has a regularization effect306

during training which in turn helps to reduce overfitting. In the objective307

function (equation 3), the weight parameter α was set to 2.0 to prioritize308

the building height estimation task, while the weight parameters for the BF309

detection task, β and γ, were set to 1.0, giving equal importance to footprint310

segmentation and the consistency between the two segmentation outputs.311
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The focusing parameter in the focal loss was set to two. All hyperparame-312

ters were fine-tuned based on the training and validation datasets, and the313

evaluation was done on the test set. The network was trained for 100 epochs314

with a batch size of 4, using the AdamW optimizer, an initial learning rate of315

0.0001, and a decay rate of 0.5. The learning rate was decreased to 0.000001,316

with the ”reduce on plateau” method controlling the decay steps. All the317

implementation was done in PyTorch and the experiments were carried out318

on an NVIDIA GeForce RTX 3080 GPU.319

3.4. Evaluation Metrics320

The predicted building heights are evaluated using two metrics RMSE321

and R2 score. The RMSE indicates the accuracy of predicted heights with322

respect to reference and R2 score measures the effectiveness of the model in323

capturing the variance in building heights. These two metrics are strategi-324

cally calculated on building pixels (those with nonzero labels) to provide a325

more precise and focused assessment of building height predictions, mitigat-326

ing any background bias. The RMSE and R2 score formulas are given in Eq.327

4, 5, where n is the number of validation samples, BHest,i is the estimated328

building height and BHref,i is reference building height.329

RMSE =

√∑n
i=1(BHref,i −BHpred,i)2

n
(4)

330

R2 = 1− (n− 1)
∑n

i=1(BHref,i −BHpred,i)
2

(n− 2)
∑n

i=1(BHref,i −BHpred,i)2
(5)

The predicted building footprints are evaluated using four well-known331

metrics, recall, precision, F1 score and Intersection over Union (IoU). The332

recall and precision evaluate the completeness and accuracy, respectively, of333

predicted building pixels compared to reference building pixels whereas the334

F1 score, being the harmonic mean of recall and precision, provides a balance335

between minimizing false positives and false negatives. The IoU metric mea-336

sures the overlap between predicted and reference building footprint pixels.337

Furthermore, it is particularly important to ensure that the model pre-338

dicts the height of buildings and not some surrounding object. To ensure339

this correspondence, the recall, precision, F1 score and IoU metric are also340

calculated between the reference building footprints and predicted building341

height binarized with a threshold of 1.0 meter i.e. pixel with predicted height342

>= 1.0 is categorized as a building pixel (1.0) otherwise background (0.0).343
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A good model should predict building height with a low RMSE score and344

a high R2 value, and building footprints with high recall, precision, and IoU.345

All these five metrics follow the range [0,1].346

4. Results347

The proposed T-SwinUNet model is evaluated on the test set, which348

comprises four distinct regions, each corresponding to a different country.349

These regions are depicted in Figure 1. A detailed quantitative evaluation,350

ablation study and qualitative evaluation are presented in the subsections351

4.1, 4.2 and 4.3, respectively. The evaluation is further followed by the352

generalizability test (subsection 4.4) and comparison of our results with the353

state-of-the-art global building height product GHSL-Built-H R2023A at 100354

m (subsection 4.5).355

As shown in Table 2, T-SwinUNet predicted building heights (BH) with356

a good RMSE score of 1.89m and R2 of 0.534. Building footprints are pre-357

dicted with 0.59 IoU. A threshold of 0.5 was used to separate the background358

and building footprint classes. We also evaluated the direct correspondence

Table 2: Building Height (BH) and Building Footprint (BF) evaluation over test set at 10
m spatial resolution (results over 5 runs).

RMSE (m)↓ R2 ↑ Recall ↑ Precision ↑ IoU ↑ F1 ↑
BH 1.89±0.016 0.53±0.009 0.71±0.014 0.66±0.009 0.58±0.010 0.69±0.013
BF 0.72±0.011 0.67±0.006 0.59±0.007 0.69±0.008

359

between the predicted heights and reference building footprints by measuring360

the overlap between the binarized building height prediction (threshold 1.0361

m) and the reference building footprints. T-SwinUNet gave 0.58 IoU, which362

shows good alignment between the predicted height and reference building363

footprints. Also, the IoU of binarized building height is close to IoU of364

predicted building footprint. This shows good consistency between the two365

learned objectives.366

The histogram plots in Figure 5 provide insights into the building height367

prediction at each site, where the predicted height distribution is compared368

with the corresponding reference building height distribution. Both reference369

and predicted building heights saturates between 10 m to 15 m. In each site,370

there are certain building pixels with height values greater than 1m but their371
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Reference (4.64, 3.27) Reference (4.59, 3.77)
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Figure 5: Sitewise histogram comparison of reference and predicted building height on the
test set. The values in the legend are the mean and standard deviation values of reference
and predicted building heights.

predicted building height values are between 0 and 1 m. Overall, there is a372

good overlap between the predicted and reference distributions.373

For further evaluation, Figure 6 presents pixel-wise correlation between374

predicted and reference building heights. The prediction on the Netherlands375

test set shows the best correlation with 0.63 R2 and 1.66 m RMSE and376

Switzerland shows the least correlation with 0.45 R2 and 2.05 m RMSE.377

Both Germany and Switzerland’s train sets have approximately the same378

number of building pixels. Still, the building height is better predicted in379

Germany which probably indicates higher complexity in learning heights in380

Switzerland than in Germany.381

It is essential to derive individual (or instance-level) building height from382

the pixel-wise regressed height values, as they are more interpretable, easy383

to analyze and monitor. To do so, the predicted pixel-wise building heights384

are post-processed using reference building footprint polygons. Where, the385

building height values were smoothed using 70 percentile height value over386

each building polygon. This also improved the pixel-wise correlation between387

the predicted height of the building and the reference height shown in Figure388
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# PixelsNetherland
        RMSE : 1.66 
        R2 : 0.63

  

        RMSE : 2.04 
        R2 : 0.50

  

Estonia

Germany
        RMSE : 1.87 
        R2 : 0.54

  

# Pixels

        RMSE : 1.89 
        R2 : 0.53

  

All Sites # Pixels

        RMSE : 2.09 
        R2 : 0.45

  

Switzerland

Figure 6: Correlation between predicted building height and reference building height.
The first plot is on full test set while the other four plots are on individual test sites. The
black diagonal plot y=x represents the best possible fit and the red line is the actual fit
to the plot.

17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4762421

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



7. The overall RMSE score reduced from 1.89 m to 1.60 m and the overall389

R2 improved from 0.53 to 0.66. The improvement is evidently consistent on390

each study site.

        RMSE : 1.77 
        R2 : 0.62

  

Estonia

# PixelsNetherland
        RMSE : 1.32 
        R2 : 0.76

  

        RMSE : 1.83 
        R2 : 0.59

  

Switzerland

Germany
        RMSE : 1.56 
        R2 : 0.65

  

# Pixels

        RMSE : 1.60 
        R2 : 0.66

  

All Sites # Pixels

Figure 7: Instance-wise smoothed correlation between predicted and reference building
height using 70 percentile of building pixels.

391

4.1. Comparison with other models392

The performance of the proposed model is compared with four other mod-393

els, a basic U-Net [Ronneberger et al., 2015] model, two recent transformer-394

based networks TransUNet [Chen et al., 2021] and SwinUNETR [Hatamizadeh395

et al., 2021] and a recent satellite time series network UTAE [Garnot and396

Landrieu, 2021]. To make a fair comparison, we implemented these four net-397

works in a multitask setting. The quantitative comparison is shown in Table398

3. The UNet model shows comparatively low scores. Both SwinUNETR399

and UTAE gave similar scores with a difference in R2 score. The UTAE400

model learns from the temporal dimension resulting in 3% better R2. The401

best results come from the proposed T-SwinUNet, which efficiently learns402

spatio-temporal features of time-series data to predict building height and403

footprints with at least 0.16 lower RMSE, 4.5% better R2 and 7% better IoU404

score.405
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Table 3: Comparison with the UNet baseline and three competing models.

RMSE (m)↓ R2 ↑ IoU ↑
UNet 3.02 0.369 0.481

TransUnet 2.49 0.422 0.50
SwinUNETR 2.05 0.456 0.51

UTAE 2.20 0.489 0.53
T-SwinUNet 1.89 0.533 0.58
MBHR-Net 4.64 0.42 0.500
BHE-Net 4.21 0.397 0.518

Our proposed T-SwinUNet model is also compared with the MBHR-Net406

[Yadav et al., 2023] and BHE-Net [Cai et al., 2023] DL models, proposed407

in two recent studies to estimate building height using Sentinel-1 SAR and408

Sentinel-2 MSI data. Both the models are dual stream models where one409

stream extracts Sentinel-1 SAR features and other extracts Sentinel-2 MSI410

features. [Yadav et al., 2023] and [Cai et al., 2023] tested MBHR-Net and411

BHE-Net on small test sets from Netherlands and China respectively. We412

implemented these two models and trained them on our dataset as proposed413

by their authors. The results are given in Table 3. Compared to MBHR-414

Net and BHE-Net, T-SwinUNet predicts building height more accurately415

(atleast 2.32 lower RMSE, 11% better R2) and predicted height show better416

alignment with the building footprints (atleast 6% better IoU).417

4.2. Ablation418

In this section, we evaluate the contribution of Multi-Task Learning419

(MTL), Time Series (TS) input and individual modality i.e. Sentinel-1 SAR420

and Sentinel-2 MSI on building height estimation results of the proposed421

T-SwinUNet. Quantitative ablation results are given in Table 4. To assess422

the impact of MTL on the performance of T-SwinUNet, the segmentation423

branch was removed from the decoder including the segmentation head1. The424

building footprints were derived by binarizing the regression output using a425

threshold of 1.0 meter. The results in Table 4 demonstrate that without426

MTL, the model yields 2% lower R2 and slightly (0.02) high RMSE. The427

improved recall and reduced precision indicate false building detection and428

possibly the cause of the drop in R2 value. On the other hand, T-SwinUNet429

trained with the complementary task of segmentation learns to avoid esti-430

mating the height of a non-building object i.e., avoid false detections.431
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Table 4: Ablation study to evaluate the contribution of different parts of the proposed
approach on the accuracy of building height estimation. The metrics shows Building
Height (BH) evaluation.

RMSE (m)↓ R2 ↑ Recall ↑ Precision ↑ IoU ↑ F1 ↑
T-SwinUNet 1.89 0.53 0.71 0.66 0.58 0.69
W/O MTL 1.92 0.51 0.81 0.56 0.52 0.66

1 TS 2.22 0.36 0.68 0.53 0.48 0.59
SAR 2.25 0.37 0.57 0.58 0.47 0.57

Optical 1.94 0.47 0.67 0.68 0.56 0.67

For estimating the impact of time series input, the T-SwinUNet was432

trained following a methodology similar to that of [Yadav et al., 2023].433

where the 12 time series images of one data point are used as 12 augmented434

images with seasonal effects. To adapt this in our implementation, instead435

of feeding 12 time series images stacked as one input, only one image is given436

to the model. The images is selected randomly for each data sample. The437

results in Table 4 show that the 12 month time series input improved the per-438

formance of T-SwinUNet, reflected in all metrics. Without time series input,439

the building height estimation shows an accuracy drop with 17% lower R2
440

and 0.33 higher RMSE. Similarly, the predicted heights show low alignment441

(10% drop in IoU score) with the building footprints.442

To evaluate the contribution of the two modalities we trained two T-443

SwinUNet one with Sentinel-1 SAR time series only and the other with444

Sentinel-2 MSI time series. The quantitative results show that Sentinel-2445

MSI input provided significantly better height estimates with good align-446

ment with building footprint than Sentinel-1 SAR. Although Sentinel-1 SAR447

is positively correlated with the height of the building, the relation can be-448

come weak due to metallic surface, building density, complex tree canopy449

scattering and others. Sentinel-2 MSI can capture shadows and seasonal ef-450

fects very well, which are important features for estimating building heights.451

Also, MSI data is beneficial in distinguishing different land cover surfaces.452

When both inputs are incorporated into the model, the results reflect further453

enhancement, particularly in the R2 score, indicating the model’s improved454

ability to precisely capture height variations.455
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4.3. Qualitative Evaluation456

For the qualitative analysis, some samples from the four test sites are vi-457

sualized in Figure 8, 9 and 10, where Figure 8 and 9 visualize building height458

predictions in small areas while Figure 10 provides visualization at a larger459

scale. These samples showcase diverse urban areas with varying building460

densities and architectural styles. For instance, the Netherlands and Ger-461

many samples are high-building density areas, while the Switzerland sam-462

ples are medium density and Estonia samples are examples of low-building463

density areas. The predicted building heights capture variations in building464

heights (from tall to short) and demonstrate a strong correlation with refer-465

ence height values. The samples show an accurate prediction of the building466

footprint with fine spatial details of building structures and their boundaries,467

ensuring fine details in building height maps. This highlights the robustness468

of the T-SwinUNet model in accurately estimating building heights in areas469

with diverse characteristics, including geographic location and architectural470

style.471

Apart from 128 × 128 samples, the predicted building height maps are472

visualized on a larger scale. Figure 10 presents city-scale predicted build-473

ing height maps, showcasing one city from each test site. The three cities,474

Groningen (Netherlands), Leipzig (Germany) and Winterthur (Switzerland)475

are dense cities with approximately 103482, 22472, 13254 buildings respec-476

tively whereas Tamsalu (Estonia) is a small city with only 1517 buildings.477

The majority of the tall buildings are towards the center of the cities, while478

the shorter buildings are on the outskirts. Figure 10 demonstrates that our479

building height predictions are accurate not only for small areas but also480

extend to large-scale building height mapping.481

4.4. Generalizability482

The motive behind the experiment is to test the generalizability of the483

model to another country within Europe. In this experiment, we trained our484

proposed T-SwinUNet model on Netherlands, Estonia and Switzerland and485

evaluated on test data from Germany. The results are then compared with486

our previous test results on Germany where the T-SwinUNet was trained on487

all four sites including Germany. Table 6 enlists the evaluation metric from488

the two settings, Figure 11 shows the predicted height distributions and489

Figure 12 shows two samples to qualitatively compare the height estimations490

in the two settings.491

21

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4762421

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



(c) Reference Height(b) S2 (RGB)(a) S1 (VV, VH) (d) Predicted Height (e) Predicted Footprint
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Figure 8: Qualitative comparison: Samples of building height and footprint predictions
from Netherlands and Switzerland test set at 10 m resolution.
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(c) Reference Height(b) S2 (RGB)(a) S1 (VV, VH) (d) Predicted Height (e) Predicted Footprint
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Figure 9: Qualitative comparison: Samples of building height and footprint predictions
from Germany and Estonia test set at 10 m resolution.
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Groningen, Netherland

Leipzig, Germany

Winterthur, Switzerland

Tamsalu, Estonia

Scale(m)

Figure 10: Building height visualizations at a larger scale, one city from each test site.

Table 5: Generalizability of T-SwinUNet on Germany test set. Compare model’s perfor-
mance when trained on all four sites (Trained on Full data) with it’s performance when
trained without Germany data (Trained W/O Germany data).

T-SwinUNet RMSE (m)↓ R2 ↑ IoU ↑
Trained on Full data 1.87 0.54 0.53

Trained W/O Germany data 2.20 0.47 0.52
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When the model is not familiar with the Germany building data distribu-492

tion (not trained on Germany data), the height estimation evaluation metric493

scores dropped showing an increase in error in the results. Both RMSE and494

R2 dropped significantly while IoU score or building segmenting capability of495

the model remained the same. The predicted distribution in Figure 11 shows496

a drop in the expected peak adding both underestimations (height less than497

1m) and overestimations with respect to the reference building heights. How-498

ever, the mean and variance of predicted height distribution in Figure 11 (a)499

and Figure 11 (b) does not show a big change.

Height (m)

C
ou

nt

Germany

Prediction (4.44, 3.20)
Reference (4.63, 4.35)

Prediction (4.97, 3.87)
Reference (4.63, 4.35)
Germany

Height (m)

C
ou

nt

(b) Not Trained on Germany Data(a) Trained on Germany Data

Figure 11: Histogram comparing predicted and reference heights on Germany test data.
(a) Prediction by T-SwinUNet trained on all four sites (Netherlands, Estonia, Switzerland
and Germany), (b) Prediction by T-SwinUNet trained on three sites (Netherlands, Estonia
and Switzerland).

500

The samples in Figure 12 show that both the predictions have good esti-501

mations of building heights but clearly there are a few overestimations in the502

prediction (e) from the model not trained on Germany data. To summarize,503

overall we see that the model shows lower performance when it is not familiar504

to similar building architectures but the building heights are still estimated505

with good accuracy.506

4.5. Comparison with GHSL-Built-H R2023A Global product at 100 m507

For the Netherlands, Estonia, and Germany, our building height predic-508

tions are based on data from 2019, while for Switzerland, it is based on data509
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(c) Reference Height(b) S2 (RGB)(a) S1 (VV, VH) (e) Prediction W/O Train(d) Prediction Train
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Figure 12: Result samples for qualitative comparison of building height estimation in
Germany by model which is trained on Germany data (d), versus estimations by model
not trained on Germany data (e).

from 2021. Despite the fact that the building heights from GHSL-Built-510

H R2023A are derived from 2018 data, they are still valid in 2019 for the511

Netherlands, Estonia and Germany due to the low rate of urban develop-512

ment (approximately 1%) in Europe [CBS, 2023, ELB, 2023, FIEC, 2023].513

For Switzerland, the 2018 GHSL height estimates are also relatively valid in514

2021, as only 4.6% of the buildings were newly constructed over a period of515

5 years (2016-2021), resulting in a build-up growth of merely 2.7% between516

2018 and 2021 [BFS, 2023]. To make a fair comparison, the predicted build-517

ing heights by T-SwinUNet were downsampled from 10m to 100m spatial518

resolution using average resampling, and both quantitative and qualitative519

comparisons were performed.520

The quantitative results at 100 m resolution are given in Table 6. The521

results show that our building height predictions are consistently accurate522

at both 10 m resolution and 100 m resolution. Compared to the GHSL-

Table 6: RMSE, R2 and IoU over test set for proposed T-SwinUNet and GHSL-Built-H
R2023A product [Pesaresi et al., 2021] at 100 m.

RMSE (m)↓ R2 ↑
GHSL-Built-H R2023A (100m) 0.56 0.68

T-SwinUNet (100m) 0.33 0.86

523

Built-H R2023A product (0.56 m RMSE and 0.36 R2), the building height524
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estimations from the proposed T-SwinUNet model (0.29 m RMSE and 0.73525

R2) are more accurate in terms of both RMSE and R2 metrics. Figure 13

RMSE : 0.29 
R2 : 0.86  

T-SwinUNETR # Pixels GHSL
RMSE : 0.56
R2 : 0.68 

# Pixels

Figure 13: Building height evaluation at 100 m using correlation plots. The black diagonal
plot y=x represents the best possible fit and the red line is the actual fit to the plot.

526

depicts similar behavior. Building height predictions from T-SwinUNet are527

highly correlated with the reference height values, as the plotted points are528

close to the diagonal (y = x), while the correlation is weak for the GHSL-529

Built-H R2023A product as the plot is more scattered.530

For qualitative comparison, two samples from each test site are visual-531

ized in Figure 14 and 15. Similar to the evaluation at 10m resolution, the532

selected samples cover both low and high-building-density areas. Visualized533

samples indicate that the building heights from the GHSL-Built-H R2023A534

product frequently underestimate or overestimate the actual building height535

(reference values). For instance, in the first-row sample from the Netherlands536

test site (Figure 14) and the two samples from the Germany test site (Fig-537

ure 15), the majority of building heights from the GHSL-Built-H R2023A538

product tend to overestimate the reference values. On the contrary, in the539

Swiss and Estonia test sites, the building heights are underestimated. On540

the other hand, the predicted building heights by the T-SwinUNet model541

closely approximate the reference building heights. Although there are slight542

discrepancies in the estimated height values, the model maintains a strong543

correlation of both tall and short building heights with reference values, sup-544

porting the correlation presented in Figure 13.545
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(c) Reference (100m)(b) S2(a) S1 (d) GHSL (100m) (d) OURS (100m)
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Figure 14: Qualitative comparison of building height predicted by T-SwinUNet (e) with
building height from GHSL-Built-H R2023A product (d) at 100 m resolution. The samples
are from the Netherlands and Switzerland test sites.
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(c) Reference (100m)(b) S2(a) S1 (d) GHSL (100m) (d) OURS (100m)
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Figure 15: Qualitative comparison of building height predicted by T-SwinUNet (e) with
building height from GHSL-Built-H R2023A product (d) at 100 m resolution. The samples
are from Germany and Estonia test sites.
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5. Conclusions546

In this study, we addressed the complex challenge of building height esti-547

mation by exploring advanced DL models. Our proposed T-SwinUNet model548

effectively processes combined Sentinel-1 SAR and Sentinel-2 MSI time se-549

ries images, providing precise building height and footprint estimations at a550

10 m resolution. Comprehensive evaluations across multiple regions, includ-551

ing the Netherlands, Switzerland, Estonia, and specific areas of Germany,552

demonstrate the model’s performance, achieving RMSE of 1.89 m and IoU553

of 0.58.554

Our comprehensive analysis, including the ablation study, highlighted555

the contributions of various components within our proposed approach. The556

results emphasized the role of MTL in enhancing the model’s overall perfor-557

mance, leading to accurate height estimations and refined building footprint558

delineations. Notably, the inclusion of Sentinel-1/2 temporal information559

through time series data significantly improved model’s accuracy, enabling560

it to capture building shadow and height features under seasonal variations.561

The complementary nature of the Sentinel-1 SAR and Sentinel-2 MSI data562

further solidified the model’s capabilities, with Sentinel-2 MSI contributing563

significantly to enhanced height estimates and precise footprint segmenta-564

tion.565

Our findings highlight the broad applicability and scalability of the pro-566

pose T-SwinUNet model, as evidenced by its success in both small-scale and567

large-scale settings. This study has the potential for global extension and fre-568

quent height map updates, as we are using frequently and globally available569

free-of-cost data. Through the successful development and rigorous evalu-570

ation of our T-SwinUNet model, this study contributes significantly to the571

advancement of accurate and scalable building height estimation, with uti-572

lization in diverse urban development monitoring applications, ranging from573

regulatory assessments and disaster impact analyses to population dynamics574

and energy consumption evaluations.575
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