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Recently an Extreme Value Theory based algorithm has found a plethora of applications in the field of climate dynamics. This algorithm allows us to
study local properties of attractors of chaotic systems and gives information about the predictability and evolution of extreme events. However, this
method requires subtle mathematical properties that are unlikely present in a system of such complexity. Here we try to give a solid mathematical
foundation to this method and discuss the kind of phenomena that arise as we increase the complexity of the systems we study.

1. The algorithm

Description

This method allows to analyse a trajectory of a dynamical system and obtain
information about the geometry of the attractor at a local scale, which in turn is related
to the persistence of particular events and their predictability. For some examples of
climate applications see References below.

The method works as follows: take a trajectory of the system and compute pairwise
distances. Define a random variable whose extreme events are close recurrences to ball
centred in a reference point in the trajectory and set a high threshold. Then take the
exceedances over the threshold and fit a Generalized Pareto Distribution (GPD) to them.

Algorithm 1 X is a trajectory

for r; € X do
Observations; = |—In(||z; — z;||) for z; € X|
ExtremeValues; = {y € Observations;|y > threshold}
o; = mean(ExtremeValues; — threshold)
LocalDimension; = 1/0;

end for

Mathematical (loose) justification

Define a random process X;, = — log(||T" (xq) — (|]) .

» Set ahigh threshold ¢ and define the excess distribution function:
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* Assume regular variation of the tails, we obtain
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2. The easiest case: absolutely continuous 1

Theorem: For ergodic systems whose invariant measure [ is absolutely continuous w.r.
Lebesgue measure it can be proven that:

i) Exceedances converge to a GPD distribution with parameter o, = di for a.e. initial
condition z( and a generic ( . <

i) If the density is analytical in a neighbourhood of (, the average of the
exceedances converges to the parameter sigma with error bounds o(n_l/ 2) (if strong
mixing) on the number of exceedances n and o(e¢~ ") on the threshold ¢ for large n.

3. 1D discontinuities and special points

For the following special points, the consequences of theorem can be shown to hold despite
not meeting the hypothesis:

Jump discontinuity points of the measure (¢ = 1/5 in the beta transformation when betais
the golden ratio)

ntegrable poles (¢ € {0, 1} in the logistic map)

ndifferent points where the density exists and is finite ({ = —1in the Cusp map)

Points where the density functionis O ({ = 1 in the Cusp map)

|

4. 1D Singular measure: The Cantor Shift

Any measure that takes support on a Cantor set is singular w.r. Lebesgue measure. This
has an effect in the regularly varying properties of the measures on it since shrinking the
ball in a gap does not change its measure. Hence the algorithm does not work:
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Numerical estimation of the regularly varying
properties and the local dimension

Exceedances and GPD fit

5. General hyperbolic maps

For general hyperbolic maps, the invariant measure on the attractor is general singular w.r.
Lebesgue, and can be extremely irregular. There are gaps, like in the Cantor Shift, that
affect the regular variation properties and the local dimension estimation. This makes the
estimate scale dependant, which means that depends in the length of the trajectory, which
in applications is arbitrary.
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Numerical estimation of the regularly varying properties and the local dimension for point in
the attractor of the Hénon map.
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