N ATION S CIEN (C EN TR POLAND

Weth I I to Mary Course & Second Second Con Second Second

Przemysław Mroczek¹, Maria Łanczont¹, Maryna Komar²

Loess chromaticity as an environmental change recorder: spectrophotometric study of aeolian dust and its role in paleoclimate studies

¹ Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Lublin, Poland ² National Museum of Natural History, National Academy of Sciences of Ukraine, Kyiv, Ukraine

КРАЇНА

EGU General Assembly 2024 Vienna, Austria & Online | 14–19 April 2024 Thu, 18 Apr, 11:09–11:11 (CEST) PICO spot 5 | PICO5.13

"Typical" loess colours:

bright, lightly saturated brown with a distinct yellow tone

light, slightly saturated brown

with a distinct red tone

7.5R 7/2

Value

Hue

Chroma

Pleistocene stratigraphy of Ukraine

Field and laboratory investigations

L1SS1+S

Man as

height scale

The following laboratory measurements were used: Field mapping and sampling of sections

Interval: 5 cm (high resolution!)

Grain size analyses:

- ≻Particle measurement: 0.01 2000 µm
- >Fractions (and subfractions)
- >Granulometric indices: mean grain size, skewness, kurtosis, GSI, U ratio
- Heat map: 100 logarithmic classes in terms of %

Spectrophotometric analyses:

- L* lightness (black vs. white)
- ➤a* redness (green vs. red)
- b* yellowness (blue vs. yellow)
- ➢Redness index
- RGB colors + tuning (Rmax)
- >digital Munsell colour

Others:

Chemical analyses (ACME, Canada):

44 major elements,
20 trace elements,
14 rare earth elements
46 geochemical indices

OSL and 14-C datings, AMS, magnetic susceptibility, biome reconstruction and thermo-humidity parameters based on paleobotanical materials, small

Laboratory spectrophotometric measurements:

✓8 mm measurement aperture in the shape of a circle

✓ Operating principle: emission of a light beam followed by the measurement of light reflected by a system of detectors

visible light

✓ Wavelength range: 400 – 700 nm (resolution every 10 nm)

✓ Compact size

✓ Wireless operation

✓ Fast measurement: about 1 second

 \checkmark Digital archiving of measurement results

4	А	В	С	D	E	F	G	н	I	
1	głębokość	Name	Test Mode	Light/Deg	L*	a*	b*	a do b	DL*	Da*
2	0,1	CH_001	SCI	D65/10°	57,01	3,6	10,29	5,54033	0,03	
3	0,2	CH_002	SCI	D65/10°	60	4,4	12,92	4,643963	3,02	
4	0,3	CH_003	SCI	D65/10°	62,91	5,12	15,09	4,168986	5,93	
5	0,4	CH_004	SCI	D65/10°	64,82	5,5	16,58	3,90953	7,84	
6	0,5	CH_005	SCI	D65/10°	65,85	5,24	16,52	3,986077	8,87	
7	0,6	CH_006	SCI	D65/10°	66,54	4,8	16,1	4,132919	9,57	
8	0,7	CH_007	SCI	D65/10°	66,69	4,6	15,58	4,280488	9,71	

780 nm

Spectrophotometry – a measurement technique that involves the quantitative measurement of the transmission or reflection of light (visible) by a sample.

"Lightness (luminance)"

Coordinate system L*a*b*

Redness index RILAB-BT according to Barrón and Torrent (1986):

$$RI_{LAB-BT} = \frac{a * ((a*)^2 + (b*)^2)^{0.5} .10^{10}}{b * . L*^6}$$

I b v C v I v v v v v v v v v v v v v v v v															
F	Plik Narzędzia główne Wstawianie Układ strony Formuły Dane Recenzja Widok Pomoc														
Can X Wytnij			Calibri ~ 11 ~ A^ A =			Aĭ ≡ ≡	≡ 📄 ॐ ∽ 🛛 🖧 Zawijaj tekst		Ogólne	~			Dobry	Ne	utra
Wklej 🗸 🎸 Malarz formatów			B I <u>U</u> → <u>H</u> → <u>A</u> →			<u>A</u> ~ = =	: 🗐 🗏 🖻 🖭 🛱 Scal i wyśrod		kuj ~ 🖙 ~ % 👓 🐜 For wa		natowanie Formatujjako unkowe∽ tabelę∽	Zły Dane wejśc		ci Da	ne w
	Schow	ek 🖓	Czcionka 🛛			Г	Wyrównanie		r <u>∍</u> Liczba	Гэ		Style			
19	19 \rightarrow : $\times \checkmark f_x$ =POTĘGA(H9;0,5)														
	А	В	С	D	E	F	G	Н	1	J	К	L	м	N	
1	Głębokość	Name	L*	a*	b*	a do potegi 2	b do potegi 2	suma potęg	suma potęg do potęgi 0,5	razy a	razy 10 do potęgi 10	L do 6	b razy L6	wynik	
2	5	Korshiv_001	53,24	2,55	7,55	6,5025	57,0025	63,505	7,969002447	20,32096	2,0321E+11	22773421316	1,71939E+11	1,181868	
3	10	Korshiv_002	51,25	2,56	7,06	6,5536	49,8436	56,3972	7,509806922	19,22511	1,92251E+11	18120209660	1,27929E+11	1,502799	
4	15	Korshiv_003	57,83	2,84	9,23	8,0656	85,1929	93,2585	9,657044061	27,42601	2,7426E+11	37404095212	3,4524E+11	0,794405	
5	20	Korshiv_004	59,12	2,93	9,76	8,5849	95,2576	103,8425	10,19031403	29,85762	2,98576E+11	42697903595	4,16732E+11	0,716471	
6	25	Korshiv_005	63,27	2,97	10,92	8,8209	119,2464	128,0673	11,31668238	33,61055	3,36105E+11	64148574022	7,00502E+11	0,479806	
7	30	Korshiv_006	62,45	3,03	10,88	9,1809	118,3744	127,5553	11,29403825	34,22094	3,42209E+11	59319114075	6,45392E+11	0,530235	
8	35	Korshiv_007	63,84	3,14	11,39	9,8596	129,7321	139,5917	11,81489314	37,09876	3,70988E+11	67695105601	7,71047E+11	0,481148	
9	40	Korshiv_008	61,27	3,17	10,89	10,0489	118,5921	128,641	11,34200159	35,95415	3,59541E+11	52903850446	5,76123E+11	0,624071	
10	45	Korshiv_009	63,21	3,41	12,2	11,6281	148,84	160,4681	12,6676004	43,19652	4,31965E+11	63784439267	7,7817E+11	0,555104	
11	50	Korshiv_010	61,27	3,08	10,84	9,4864	117,5056	126,992	11,26907272	34,70874	3,47087E+11	52903850446	5,73478E+11	0,605233	
12	55	Korshiv_011	63,42	3,2	11,53	10,24	132,9409	143,1809	11,96582216	38,29063	3,82906E+11	65066496999	7,50217E+11	0,510394	
13	60	Korshiv_012	64,82	3,43	12,62	11,7649	159,2644	171,0293	13,0778171	44,85691	4,48569E+11	74174420188	9,36081E+11	0,479199	
14	65	Korshiv_013	63,03	3,38	12,2	11,4244	148,84	160,2644	12,65955765	42,7893	4,27893E+11	62702353587	7,64969E+11	0,55936	
15	70	Korshiv_014	62,38	3,39	11,74	11,4921	137,8276	149,3197	12,21964402	41,42459	4,14246E+11	58921286741	6,91736E+11	0,59885	
16	75	Korshiv_015	64,81	3,42	12,94	11,6964	167,4436	179,14	13,38431918	45,77437	4,57744E+11	74105787835	9,58929E+11	0,477349	
17	80	Korshiv_016	64,88	3,51	12,8	12,3201	163,84	176,1601	13,27253179	46,58659	4,65866E+11	74587327632	9,54718E+11	0,487962	
18	85	Korshiv_017	63,36	3,39	12,23	11,4921	149,5729	161,065	12,69113864	43,02296	4,3023E+11	64698023224	7,91257E+11	0,543729	
19	90	Korshiv_018	66,01	3,96	14,74	15,6816	217,2676	232,9492	15,26267342	60,44019	6,04402E+11	82729118438	1,21943E+12	0,495644	
20	95	Korshiv_019	64,58	3,61	13,2	13,0321	174,24	187,2721	13,68473968	49,40191	4,94019E+11	72541786042	9,57552E+11	0,515919	
21	100	Korshiv_020	65,15	3,6	13,38	12,96	179,0244	191,9844	13,85584353	49,88104	4,9881E+11	76469195343	1,02316E+12	0,48752	

Klishchyntsi site

12

14

16.

20 -

22 -

26

Example no. 1

Klishchyntsi LPS – example of our multi-proxy analysis

Klishchyntsi LPS – example of our multi-proxy analysis

A Major elements (100% weight excluding volatiles), rare earth elements (ppm), and basic parameters describing their variability with R max tuning

Geochemical indicators with R max tuning

Velyka Andrusivka site

Vb. Key results

Fractions and granulometric indices for the loess-palaeosol

sequence

Soil horizons are clear in grain size (and colours).

Loess layers show high variability in grain size resulting in division into subunits.

Cherepyn site (Ovruch loess Island)

Cherepyn site

Colour tuning according to R (from real to max)

Main fractions (A), the grain size distribution presented on heat map (B) and granulation indeces with Rmax tuning in the background (C)

Other examples

General conclusions:

- Enhanced objectivity in colour measurement: Digital spectrometers improve the objectivity and reliability of soil color analysis over traditional Munsell Soil Colour Chart methods.
- Detailed chromatic characterization: Spectrophotometry provides precise measurements of key color parameters, helping to differentiate loess layers and soil horizons based on their unique color profiles.
- Development of a comparative digital colour record: A digital color record aligned with the traditional Munsell scale enhances comparison and consistency, bridging traditional and modern soil color analysis methods.
- Geological and pedogenic insights: Chromatic data reveal color patterns linked to stratigraphic layers and soil stages, aiding in understanding the area's geological and pedogenic evolution.
- Detection of subtle geological features: High-resolution spectrophotometric analysis detects subtle chromatic shifts, revealing hidden erosional features and lithological changes in loess sequences.
- Correlation with geochemical data: Variability in color parameters among primary loesses correlates with geochemical data, validating colour as a reliable indicator in geological and soil studies.
- Dynamic environmental evolution: Documented color shifts from cold to warm periods illustrate the natural erosion and deposition cycles that shape the landscape.

Funding: OPUS 16, panel ST10, October 2019 - September 2024, Institute of Earth Sciences and Environment, Maria Curie-Skłodowska University

bal, regional, and local factors influencing the paleoclimatic and environmental record in Ukrainian loess-soil sequences along the er Valley - from proximal areas to distal periglacial zones

Thank you for your attention!