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e Injection of fluids into
th&subsurface has been
linked to fault instability,
causing a)induced
seismicity and
b)aseismic creep.
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Experimental Observations: Injection Rate vs. Failure Pressure

Recent experimental studies (Passelegue et al.,2018; Ji & Wu, 2020; Ji et al., 2021) show that slower
injections lead to failure at lower pressures than fast injection rates.
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Formulation for the physics of pore fluid

Grains mass conservation : ‘ Under the assumption of nearly
8[(1 ~d)p ] incompressible grains, but deformable
TS+V-[(1—¢)pSuS]=O media
Fluid mass conservation : @p _ I V. {k Vp} _ L V. ‘U,
Alp, | o1 ] Bo |u P
D _ L It can be shown that this

arcy . formulation is a generalization of:
U, —u, = _i Vp Wang, 2000

U z+  Bechrach et al.,, 2001 (when

neglecting inertia)

Walder & Nur, 1984

Snieder & van der Beukel, 2004
Samuelson et al.., 2009

Fluid state :
Pr=Po (1 +)
Fluid compéibﬂity




Addlng the gr ains Normal force on grain i:

& Elastic repulsive (\iflscogs
Particle 1 Particle 1 force amping
\E\-/L_gt' E ( A \ . A -
f’/SE\ o — ::; = [l‘n (Rz % Rj - rij) — Tn’ (rz’j ? n) n
Particle 2 Particle 2
Shear direction Normal direction

Shear force on grain i:

Elastic Frictional

shear force  resistance

>

fi; = —{min[k,As, p(F - 7)]

Lw,; = Z Rij % .fzij \ Linear and angular
J

momentum of grain i:



2-phase 2-scale model

ﬂ Grains B.C. - Normal and Shear

Stress or Displacement
Fluid B.C. - Pressure

or Pressure gradient
ST 7ok 5 :

u.' k; (D, p/

on grid

Periodic
og‘pou.ad

Permeability evolution is given by 3D
Carman-Kozeny relationship:
k(1 +2¢)7

T ey

Solid deformation changes
the fluid pressure via the
divergence in solid velocity

V- -u,

And the local geometry as
expressed by the porosity,
permeability

® .k

The fluid pressure
gradients VP

act as a force affecting
the solid grain motion.



End-member cases of fluid flow

e We consider a simple pore-fluid equation including compaction source
and darcian diffusion (Goren et. al., 2010, 2011).

DARCIAN DIFFUSION

OP 1 1 0D
— — —V - |[kVP = (.
ot quv RVE] po(l — @) Ot 0

DILATIVE SOURCE

e Where P(x,t) is the pore pressure, B is the adiabatic fluid
compressibility, ¢ is the porosity, 1 is the viscosity of the fluid and k

is the permeability.



Diffusive End Member:

e Following is the diffusive end member, with initial and boundary
conditions 0P Il
- V.[kVP|=0. +——I
ot  [on
IC: P(z.0) = 0 & BC: P(0,t) = P(L,t) = Pyt
e Plugging in the solution to Eqn I in a Mohr Coulomb Failure criterion

- L*P,
| PI)()'II.N.(.](I'I"_!/ — R)t = Op — ()'T(“ e 8D
e P is the injected pressure during failure, o_1s the normal stress, ¢
boundary ” A

is the shear stress, p 1s the static friction coefficient, L is the length of
the domain, D is the hydraulic diffusivity of the medium and P, is the
rate of injection.



Dilative End Member:

o F ollowing is the dilative end member

1 O
|
,B(Dﬂv |kV P| + ﬂ(l)(l — (D) i 0. 11
e We restructure the source term w.r.t the strain rate j, /h
1 oo .
o(1 — o) Ot =

e Plugging in the solution with the same initial and boundary conditions
as discussed above to Egn II in a Mohr Coulomb Failure criterion

: L? P,
Pboundary:Potszan UT//L+8D K,B

e K is the Young’s modulus of the grain packing and B is the adiabatic
fluid compressibility.



Supplementary Results
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