
1. Introduction
Critical zone science has made significant advancements in bringing together various disciplines. Yet, the poorly 
studied interactions and coevolution among soil, rock, topography, land cover, and climate hinder us from devel-
oping a quantitative and generalizable understanding of hydrologic storage–discharge relation in the critical zone 
(L. Li et al., 2017; Sivapalan, 2018). This challenge is especially true at stream low flow, where a potentially 
large discharge from hillslopes bedrock storage remains poorly characterized and quantified (Hale et al., 2016). 
Nevertheless, large-scale scientific synthesis on how catchments store and discharge water at a low-flow state 
can stimulate (transferable) understanding of the interactions between water, rock, and energy in the critical zone 
and their connections to the low-flow storage–discharge relation (Wlostowski et al., 2021). Such insight could 
shed light on (a) the regionalization of storage–discharge relation to ungauged landscapes (Blöschl et al., 2014; 
Hrachowitz et al., 2013), (b) the catchment’s drought vulnerability to the rapidly changing environment (Ameli 
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theory’s proposed range of nonlinearity sufficiently explains the nonlinearity of low-flow storage–discharge 
relation. However, in catchments with a strong influence of upland hillslope groundwater subsidy through 
deep slow-moving storage unit, the current state of hydraulic groundwater theory, using one single (non)linear 
representative storage unit, may not be sufficient to explain the large nonlinearity and convexity of low-flow 
storage–discharge relation (or the long tail of hydrograph late recession). Considering β1 informs the low-flow 
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Plain Language Summary There is limited knowledge of the ways watersheds generate stream 
low flow during dry periods, in watersheds with no (or little) streamflow observations and even in watersheds 
with extensive streamflow observations. This knowledge gap can limit the development of accurate models 
and hinder assessments of the impacts of global environmental changes on drought vulnerability. This study 
aims to address this knowledge gap by examining the a less-explored way in which watersheds may generate a 
large amount of streamflow during dry periods from upland hillslopes located tens to hundreds of kilometers 
away from the mainstream. Our study shows that in some environments, this poorly quantified component of 
water balance may disproportionately (a) affect the relationship between watershed storage and streamflow 
discharge, which is used to develop a hydrologic model, and (b) contribute to the long tail of streamflow 
hydrograph during dry periods and thus reducing the vulnerability of drought. Our findings suggest that while 
the classical theory of streamflow generation can sufficiently explain the ways watersheds generate stream low 
flow in a portion of watersheds, the large contribution from upland hillslopes to low flow may result in certain 
watersheds being less low-flow vulnerable than others.
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& Creed, 2018; Brooks et  al.,  2015), and (c) the patterns of stream transit time and that of concentration of 
geogenic and biogenic solutes in natural and agricultural landscapes (Ameli et al., 2017; L. Li et al., 2022). A 
qualitative synthesis of the linkages between the critical zone structure, stream low-flow generation mechanisms, 
and low-flow discharge sensitivity to changes in storage has been recently conducted by Wlostowski et al. (2021) 
across 15 (mostly) small catchments in the USA-Critical Zone Observatories (CZOs). Inspired by this qualitative 
synthesis, the present study aims to contribute to developing a more generalizable quantitative framework to 
interrogate the linkages between critical zone structure and low-flow storage–discharge relation across a suite of 
climatic and physical settings.

The streamflow sensitivity to changes in subsurface storage, also referred to as the sensitivity function, was 
introduced by Kirchner (2009) as a product of the classical recession analysis (Brutsaert & Nieber, 1977). The 
sensitivity function can be used to characterize catchment-scale flow dynamics and estimate the functional form 
of the storage–discharge relationship. The sensitivity function has been widely used to identify the nonlinear 
relation between subsurface dynamic storage and discharge (Birkel et al., 2011), describe the average flow and 
low-flow vulnerabilities to alterations in subsurface storage (Berghuijs et al., 2016; Teuling et al., 2010), explore 
functional relationships between rainfall variability and catchment transit time (Wilusz et al., 2017), calculate 
groundwater recharge to high-elevation bedrock systems (Ajami et al., 2011), estimate catchment dynamic stor-
age (Buttle, 2016; Carrer et al., 2019), and assess catchment dynamic storage variations over time due to perma-
frost thawing (Cooper et al., 2023). Tashie et al. (2020) suggested that the nonlinearity of the sensitivity function 
(β: the value of sensitivity function power law exponent) could provide valuable insights into catchments’ drought 
vulnerability. Indeed, a larger β implies a more convex hydrograph recession, indicating a sustained long tail at 
the late recession with a relatively more stable and drought-resistant low-flow condition. Additionally, a larger β 
implies a more convex storage–discharge relation, indicating a smaller variation in low-flow discharge for a unit 
change in subsurface storage. Hereafter, in this paper, a larger nonlinearity corresponds to a larger β and a more 
significant convexity of storage–discharge relation. Thus, for the case in which the relation is concave (β < 0), 
larger nonlinearity still refers to a relatively larger convexity (which is equivalent to a smaller concavity; see 
Tashie et al., 2020).

The nonlinearity of sensitivity function (β)—proportional to the nonlinearity of storage–discharge relation and 
that of hydrograph recession (see Section 3.1)—is theoretically explained by two different theories. Hydraulic 
groundwater theory relates the nonlinearity of hydrograph recession, at both early and late recession stages, to 
the nonlinear hydraulic of flow during water discharge from a single “representative storage unit” (Brutsaert & 
Nieber, 1977). This explanation is based on derivations from the Boussinesq equation, which assumes that the 
catchment-scale storage–discharge relation follows that of a representative storage unit whose hydraulic proper-
ties (e.g., water transmission function) are representative of the hydraulic properties of the collection of units (i.e., 
soil mantled shallow aquifers, bedrock aquifers) that make up a catchment. For late-recession nonlinearity (β1), 
which is assumed to represent the nonlinearity of low-flow state, this theory suggests a range of β1 between −1 
and 0.5 for different morphology, geology, and climate conditions of the representative storage unit (see review 
paper by Troch et al. [2013] and see the discussion in Section 5.2 for more details). Catchment hydraulic proper-
ties, however, could be vastly different among storage units in some environments. Thus, a single storage unit may 
not sufficiently represent catchment flow dynamics. The variability theory (Harman et al., 2009), a more recent 
theory, links the nonlinearity of “overall” recession (merged early and late recession stages) to the variability of 
subsurface flow hydraulic among the storage units that make up a catchment. Using a multiple linear reservoir 
model, Harman et al. (2009) theoretically showed that the nonlinearity of hydrograph recession is strongly asso-
ciated with the variability of time constants among linear reservoirs. In their theoretical model, a linear reservoir 
was assumed to emulate the storage–discharge behavior of each storage unit, with the reservoir’s time constant 
reflected the unit’s transmission timescale. Furthermore, Clark et al. (2009), using streamflow data at three differ-
ent scales within Panola experimental catchment, showed that discharges from three storage units with distinct 
transmission timescales, including hillslopes, ephemeral riparian zone, and permanent riparian zone, sequentially 
increase the nonlinearity of overall recession.

Progress has been made in developing different theories—and conceptual models—that can explain the nonlin-
earity of “overall” recession. However, overall recession merges a wide range of recession flow dynamics. The 
strong nonlinearity of early recession could dominate the overall recession nonlinearity, concealing the informa-
tion on low-flow storage–discharge relation one can extract from the hydrograph recession (Kim et al., 2023). 
Therefore, the theories and conceptual models of the overall recession may not be transferrable to late-recession 
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dynamics. While the studies used the variability theory focused mainly on the overall recession, hydraulic 
groundwater theory suggested a separate theoretical range for the late-recession nonlinearity (as stated above). 
However, this theoretical range was not explored empirically across different climatic and physical settings to 
allow generalization to diverse environments. More importantly, it was not explored whether a single “repre-
sentative storage unit” could thoroughly explain the combinations of diverse mechanisms which are involved in 
the catchment’s late-recession dynamics. Generally, hydraulic groundwater theory, variability theory, and other 
conceptual models used to describe hydrograph recession, sensitivity function, and storage–discharge relation 
were not translated into a generalizable framework able to rationalize and estimate the nonlinearity of hydro-
graph’s late recession or that of low-flow storage–discharge relation (Troch et al., 2013).

Subsurface discharge to low flow can be sourced from different storage units of a given catchment. A ripar-
ian sedimentary deposit aquifer is a relatively shallow storage unit that (almost) always contributes relatively 
fast-moving groundwater to low flow (Klaus et al., 2015). Gabrielli et al. (2018)—through an intensive geochem-
ical and hydrometric field campaign over 400 days at the Maimai catchment in New Zealand—showed that a 
large proportion of low flow during both wet and dry seasons comes from riparian sedimentary deposit aquifer 
with less than 4 months old groundwater age. They also showed that there is an additional independent stor-
age unit that contributes distinctly older groundwater to low flow. A deep slow-moving (bedrock) aquifer that 
connects upland hillslope bedrock groundwater to riparian bedrock and ultimately contributes to stream low flow, 
with minimal interaction with shallow riparian sedimentary deposit aquifer. Their experimental analysis depicted 
an average groundwater age of 10.5 years within upland hillslope bedrock and of 23 years old within deep riparian 
bedrock near the discharge zone. Ameli et al. (2018) modeling experiment in the same site showed that despite 
having low-permeable bedrock, close to 50% of water recharged in the Maimai upland hillslopes subsidizes their 
mainstream through deep slow-moving bedrock aquifer.

At Maimai catchment, both shallow fast-moving riparian and deep slow-moving storage units proportionally and 
independently contribute to low flow. The stream’s low-flow transit time reflected the groundwater ages of both 
storage units, while groundwater ages at the discharge points of the two storage units were distinctly different 
(4 months vs. 23 years; Gabrielli et al., 2018). At a relatively more permeable Scottish catchment (with surficial 
geology composed of glacial drift), Birkel et al. (2015) showed that upland hillslope groundwater contribution 
through deep slow-moving aquifer is the dominant source of low flow as stream low-flow transit time largely 
reflects the old age of this storage unit. These experimental findings may suggest that upland hillslope ground-
water subsidy, occurring through deep slow-moving aquifer, should be incorporated in theories and conceptual 
models of low-flow generation. Upland groundwater contribution through deep slow-moving aquifer—or ground-
water subsidy to parent catchment as termed by Ameli et al. (2018)—may have distinctively older age, longer 
transmission timescale, and different geochemical function compared to groundwater contribution through shal-
low riparian sedimentary deposit aquifer. As suggested by the two experimental examples above and shown by 
the modeling experiment conducted by Ameli et al. (2018), the relative extent of groundwater subsidy varies from 
one catchment to the other, depending on the catchment’s climatic, topographical, and geological characteristics.

In this paper, we hypothesize that the extent of upland hillslope groundwater subsidy influences the nonlinearity 
of sensitivity function or that of storage–discharge relation dominating low flow. A relatively large volume of 
upland hillslope groundwater subsidy through deep slow-moving aquifer (such as bedrock aquifer) in addition 
to the consistently accessible groundwater supply from the shallow fast-moving riparian sedimentary deposit 
aquifer may increase low-flow nonlinearity of sensitivity function. This is caused by the distinct transmission 
timescales between the two storage units (or aquifers). Alternatively, a relatively small extent of upland hillslope 
groundwater subsidy through deep slow-moving aquifer makes riparian sedimentary deposit aquifer the primary 
discharge contributor to low flow, reducing the catchment-scale nonlinearity. In the present study, this hypoth-
esis is tested theoretically and empirically. Our empirical (large-sample hydrology) analysis will be conducted 
across a large sample of catchments in Canada and the USA. In this analysis, we also develop a Groundwa-
ter Subsidy Index (GSI) that approximates the catchment-scale ratio between the groundwater contributions of 
upland hillslope through deep slow-moving aquifer and riparian shallow sedimentary deposit aquifer. To achieve 
a process-oriented and generalizable approach, the index includes the hydrologically relevant interactions among 
landscape critical zone attributes. Our theoretical and empirical analyses also help to evaluate the applicability 
of the range of nonlinearity values proposed by hydraulic groundwater theory and to generate hypotheses on the 
potential causes of deviation from the suggested range.
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Overall, we respond to Wlostowski et al. (2021) call for the synthesis of low-flow generation mechanisms and 
build on the conceptual models of overall recession nonlinearity proposed by Harman et al. (2009) and Clark 
et al. (2009) to develop a generalizable scientific synthesis on how critical zone structure links to a catchment’s 
low-flow sensitivity function and storage–discharge relation. Primarily, we respond to the questions below theo-
retically and empirically:

Does the extent of upland hillslope groundwater subsidy through deep slow-moving aquifer, relative to the 
groundwater contribution of shallow riparian sedimentary deposit aquifer, inform developing a generalizable 
conceptual model able to

1.  Describe the nonlinearity of the low-flow sensitivity function?
2.  Explain the functional relation between storage and low-flow discharge?

The research questions above are some of the most pressing in understanding critical zone hydrologic processes, 
as noted in recent reviews (Grant & Dietrich, 2017; Markovich et al., 2019; McDonnell, 2017).

2. Data
2.1. Streamflow Data

The streamflow data contain 1,798 gauges across Canada and the United States. The Canadian gauges are from 
the HYDAT data set (Water Survey of Canada [2020], HYDAT database), while the United States stream gauges 
are from the CAMELS data set (Addor et al., 2017). The 1,798 catchments, associated with these gauges, have 
areas ranging from 100 to 289,128 km 2, where catchments smaller than 100 km 2 were excluded due to the coarse 
resolution of climatic attributes (as done in Janssen & Ameli, 2021; Wu et al., 2021). The details of catchment 
boundary polygon delineation and catchment area calculation are explained in Section 2.3. Note that these catch-
ments were minimally impacted by land development practices. Streamflow data from these 1,798 catchments, 
for the period between 1 January 1981 and 31 December 2019, were used to calculate the streamflow sensi-
tivity function and storage–discharge relation (see Section 3.3). For each catchment, to calculate the proposed 
GSI (Section 3.4), the catchment-scale average values of climatic, topographical, soil, and geological attributes 
were calculated using available databases and delineated catchment boundary polygon, as will be explained in 
Sections 2.2–2.4.

2.2. Climatic Data

Climatic data used in our study were obtained from the ERA5-Land (ERA5-L) database (Muñoz-Sabater 
et al., 2021) for the period between 1 January 1981 and 31 December 2019. ERA5-L provides estimated monthly 
averaged global climatic data on land masses at 9 km 2 spatial resolution. In each catchment, we used monthly 
scale total precipitation, snowmelt, and actual evapotranspiration data to calculate the long-term average annual 
water surplus and snow fraction, during the study period (1981–2019). The former was calculated as the long-
term average of the annual water surplus, where the annual water surplus was calculated as the sum of differences 
between monthly total precipitation and monthly total actual evapotranspiration in each year. The latter was 
calculated as the ratio of the long-term average annual snowmelt to the long-term average annual total precipita-
tion. We used one single globally available database of climatic attributes to showcase the potential application 
of the proposed index in our empirical analysis to the other parts of the globe. In addition, the use of one single 
database for all interrelated climatic data helps reduce the systematic bias in estimating our index and ultimately 
in testing our hypothesis. In our case, most available local and regional climatic databases in North America, 
which contain precipitation and snowmelt data, do not include actual evapotranspiration.

2.3. Topographical Data

For each Canadian catchment, we used 90-m 2 resolution elevation, flow direction, and flow accumulation 
raster-based data from MERIT Hydro (Yamazaki et al., 2019) to delineate the catchment boundary polygon using 
the Watershed Tool in ArcGIS. The USA’s catchments boundary polygons were delineated in a similar manner 
in Addor et al. (2017). The delineated boundary polygons were used to calculate catchment-scale average values 
of climatic (Section 2.2) and soil and geological attributes (Section 2.4). The elevation data were also used to 

 19447973, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034155, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

LI AND AMELI

10.1029/2022WR034155

5 of 24

calculate the raster-based slope at 90-m resolution. Then, using the deline-
ated boundary polygons, we calculated the catchment-scale average value of 
slope for each study catchment.

2.4. Soil and Geological Data

The soil hydraulic conductivity data were extracted from a gridded 
(900-m 2 resolution) global-scale database developed by Dai et  al.  (2019) 
to calculate catchment-scale average soil hydraulic conductivity (Ksoil) and 
catchment-scale standard deviation of soil hydraulic conductivity. The aver-
age (Kd) and standard deviation of saturated hydraulic conductivity of deep 
geological formation were calculated for each catchment using global-scale 
data set on the permeability of deep geology developed by Huscroft 
et  al.  (2018). The catchment-scale average sedimentary deposit thickness 
(SDT) and catchment-scale standard deviation of SDT were estimated 
using 1-km 2 resolution SDT data compiled by Pelletier et al. (2016). Here, 
we calculated the catchment-scale standard deviation of soil and geologi-
cal properties additional to their catchment-scale average. We assume that 
in those catchments with a large within-catchment variability (or standard 
deviation) of these attributes, the average values of the attributes cannot be 
meaningful representatives of catchments shallow and deep hydraulic charac-
teristics. Therefore, 661 out of the 1,798 catchments with standard deviations 
of Ksoil, Kd, or SDT larger than 30% are excluded from our study catchments. 
This left us with 1,137 catchments (Figure 1) for further analysis. It should 

be noted that the use of other magnitudes for this filter (e.g., 40%) does not affect the conclusions of this study. 
Additionally, we used the 1-km 2 resolution raster-based global-scale data set on the percentage of hillslope versus 
riparian zone, developed by Pelletier et  al.  (2016). We calculated the catchment-scale average percentage of 
hillslope versus riparian zone for each study catchment.

3. Method
In this section, we present the methodology and analytical framework employed in our study. First, we intro-
duce the equations of sensitivity function, storage–discharge relation, and the description of their nonlinearities 
(Section 3.1). Next, using two linear reservoir model, we derive an analytical equation for the nonlinearity of 
sensitivity function at low flow (β1) as a function of hydraulic properties of the two reservoirs contributing 
groundwater to low flow (Section 3.2). The first reservoir emulates shallow fast-moving riparian sedimentary 
deposit aquifer and the second reservoir emulates deep slow-moving aquifer. This analysis helps us to theoret-
ically explore our overarching hypothesis (as we will be explained in Section 4). Sections 3.3–3.5 explain the 
methodologies used in our empirical analyses. Section 3.3 explains our methods used to derive β1 using stream-
flow observation data. Then, we develop a GSI, composed of hydrologically relevant interactions among critical 
zone attributes, to approximate the ratio of upland hillslope groundwater subsidy through deep slow-moving aqui-
fer to groundwater contribution through shallow fast-moving riparian sedimentary deposit aquifer (Section 3.4). 
Finally, we explore the general association between the GSI and β1 (and the nonlinearity of storage–discharge 
relation) across a large sample of catchments spanning a spectrum of climatic, topographical, and geological 
conditions (as explained in Section 3.5).

3.1. Sensitivity Function and Storage–Discharge Relation

The hydrograph recession analysis, proposed by Brutsaert and Nieber  (1977), has been widely used to study 
catchment-scale flow dynamics. The relation between recession rate (𝐴𝐴 −𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑 ) and streamflow (Q), in the log–
log scale, is often approximated as linear suggesting a power law relationship between recession rate and stream-
flow as

−
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑎𝑎𝑑𝑑𝑏𝑏 (1)

Figure 1. The locations of 1,137 study catchments. A total of 78 red squares 
and yellow stars refer to the catchments used in the Base Case methodological 
scenario after applying the associated filters (see Section 3.3). Yellow stars 
refer to the 37 catchments that remained in the Bootstrap methodological 
scenario after bootstrapping the data and applying the associated filters (see 
Text S2 in Supporting Information S1).
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where a and b are recession constants. The exponent b is recently called the hydrograph recession nonlinearity 
(Tashie et al., 2020). Kirchner (2009) derived the sensitivity function (g(Q)) [1/T] or streamflow sensitivity to 
changes in subsurface storage as

𝑔𝑔(𝑄𝑄) =
𝑑𝑑𝑄𝑄

𝑑𝑑𝑑𝑑
=

𝑑𝑑𝑄𝑄∕𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑
 (2a)

𝑔𝑔(𝑄𝑄) ≈ −
𝑑𝑑𝑄𝑄∕𝑑𝑑𝑑𝑑

𝑄𝑄
= 𝑎𝑎𝑄𝑄𝛽𝛽 (2b)

The power function’s exponent (β) refers to the nonlinearity of the sensitivity function. Note that Equation 2b was 
approximated from Equation 2a, assuming minimal human interference in the catchment and during the periods 
with the minimal surface flow and when ET (actual evapotranspiration) and P (precipitation) are much smaller 
than Q. g(Q) function can also be used to identify the relationship between storage (S–S0) and discharge (Q), as 
done in Carrer et al. (2019):

𝑆𝑆 − 𝑆𝑆0 =

⎧
⎪
⎨
⎪
⎩

1

𝑎𝑎
⋅

1

1−𝛽𝛽
𝑄𝑄1−𝛽𝛽 , 𝛽𝛽 ≠ 1

1

𝑎𝑎
ln(𝑄𝑄), 𝛽𝛽 = 1

 (3)

Here, S–S0 refers to the active (or hydraulic) storage, where S0 in a given catchment is the subsurface storage corre-
sponding to an arbitrary reference Q value (e.g., minimum storage corresponds to a minimum of late-recession 
flow value extracted along all recession events; see Figures 2c and 2d for the examples of storage–discharge 
relations calculated using Equation 3).

The term “nonlinearity” will be used interchangeably to refer to the nonlinearities of hydrograph recession, sensi-
tivity function, or storage–discharge relation. The power function holds for all three characteristics, where the 
exponent b, or nonlinearity of hydrograph recession (Equation 1), is related to the exponent β, or nonlinearity of 
sensitivity function (Equation 2b), by b = β + 1. The power function’s exponent (1 − β) refers to the nonlinearity 
of the storage–discharge relation (Equation 3). Note that a larger recession nonlinearity (or a larger b) refers to a 
longer tail of hydrograph recession. Similarly, a larger nonlinearity of sensitivity function refers to a larger β and 
a more significant convexity of storage–discharge relation where storage and discharge represent horizontal axes 
and vertical axes, respectively. Thus, for the case in which the storage–discharge relation is concave (β < 0), larger 
β still refers to a relatively larger convexity (which is equivalent to a smaller concavity) of the storage–discharge 
relation (see Figure 3 for the conceptual definitions of the nonlinearity and convexity/concavity in hydrograph 
recession and storage–discharge relation).

3.2. Theoretical Assessment of Our Hypothesis Using Two Linear Reservoir Model

Two (or multi) linear reservoir models (e.g., Gao et al., 2017) could, in a simplified manner, emulate the reces-
sion flow dynamics. Clark et al. (2009) conceptual model of recession flow dynamics at the Panola experimental 
site—built on the multilinear reservoir model of Harman et al.  (2009)—suggested that a model with parallel 
linear reservoirs provides the most plausible explanation for the nonlinearity of overall recession hydrograph. 
In their conceptualizations, reservoirs with different transmission timescales represented different storage units, 
including hillslope zone, ephemeral riparian zone, and permanent riparian zone. While the parallel linear reser-
voir model has often been used to explain the nonlinearity of the overall recession hydrograph, in this study, we 
use the model to explain the nonlinearity of the sensitivity function that dominates low flow (β1), conceptually 
associated only with the late-recession hydrograph. We treated the low flow or late-recession flow (Q(t)) in a 
given catchment as the outcome of the groundwater flow contributions from two parallel linear reservoirs: (a) 
deep slow-moving aquifer (second reservoir) that emulates hydraulic properties of deep low-permeable strata 
(e.g., bedrock, lower soil horizons) and connects upland hillslope groundwater subsidy to stream and (b) shallow 
fast-moving riparian sedimentary deposit aquifer (first reservoir):

𝑄𝑄(𝑡𝑡) = 𝑄𝑄d(𝑡𝑡) +𝑄𝑄s(𝑡𝑡) = 𝑄𝑄d(0)𝑒𝑒
−𝑡𝑡∕𝜏𝜏d +𝑄𝑄s(0)𝑒𝑒

−𝑡𝑡∕𝜏𝜏s (4)

Qd(t) and Qs(t) refer to the groundwater flow contributions to late-recession flow at time t from deep and shallow 
aquifers (reservoirs), respectively. τd and τs are the time constants of groundwater transmission from deep and 
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shallow aquifers. Combing Equations 4 and 2b results in an analytical equation that relates β1 to Qd, Qs, and their 
time constants (see Text S1 and Equation A8 in Supporting Information S1). The derived equation is comparable 
to that of Gao et al.  (2017), developed for the relationship between the overall recession nonlinearity (b) and 
compartmentalized flow.

Note that the focus of our paper is to explore the spatial variations of the (time-invariant) “typical” β1 among 
catchments and understanding theories and drivers of such spatial variations, rather than assessing the temporal 
event-to-event variability of β1 within a single catchment. Therefore, hereafter we assume that two linear reservoir 
model emulates the typical and the most frequent (among all events) low-flow recession dynamics of a given 
catchment, and β1 emulates the typical nonlinearity of low-flow dynamics. This treatment is consistent with 
the classical application of the (non)linear reservoir model used to explain the typical nonlinearity of storage–
discharge relation dominating low flow (e.g., Wittenberg, 1999 among others). In the remainder of this section, 
we describe how we expand Equation A8 in Supporting Information S1 to obtain a relationship between β1 and 
hydraulic properties that control reservoirs flow and their time constants.

Figure 2. Example estimation of sensitivity function nonlinearity (β) using Base Case methodological scenario for (a) South 
Toe River Near Celo, North Carolina, USA, and (b) Zeballos River Near Zeballos, British Columbia, Canada. The schematic 
of storage–discharge relation at low-flow condition corresponding to flow dynamics before the breakpoint (shown in blue in 
top panels) for (c) South Toe River Near Celo, with a smaller nonlinearity of low-flow sensitivity function (β1) and a concave 
low-flow storage–discharge relation, and for (d) Zeballos River, with a larger β1 and a convex low-flow storage–discharge 
relation. Here, S − S0 refers to the active (or hydraulic) storage calculated for the late-recession period (before the breakpoint). 
S0 is the subsurface storage corresponding to an arbitrary reference Q value (e.g., storage corresponds to a minimum of 
late-recession flow value extracted along all recession events), in a given catchment.

 19447973, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034155, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

LI AND AMELI

10.1029/2022WR034155

8 of 24

Figure 3. Conceptualization of the overarching hypothesis of this paper. In this conceptualization, the representative shallow fast-moving riparian sedimentary 
deposit aquifer (depicted by light brown color) represents the hydraulic properties of the collection of a catchment’s riparian aquifers containing lowland permeable 
sedimentary deposits above the bedrock. Groundwater contribution to low flow through this aquifer was shown by green arrows. Hs refers to time-invariant typical 
saturated thicknesses of the representative shallow riparian aquifer. The representative deep slow-moving aquifer (depicted by khaki and tiled khaki colors) represents 
the hydraulic properties of the collection of aquifers that connect deep groundwater flow paths (dark blue arrows) from upland hillslope to mainstream at low-flow 
conditions. Hd refers to time-invariant typical saturated thicknesses of the representative deep slow-moving aquifer. id and is refer to typical hydraulic gradient of 
the representative deep slow-moving and shallow fast-moving aquifers, respectively. Arrows density schematizes the relative groundwater contributions of deep 
slow-moving aquifer (dark blue) versus shallow fast-moving riparian sedimentary deposit aquifer (green). (a) A catchment, with a relatively thin typical saturated 
thickness and/or with a small typical hydraulic gradient in its deep slow-moving aquifer, sustains small amount of diffusive contribution of upland hillslope groundwater 
to low flow. (a′) This type of catchments may show a small nonlinearity of low-flow sensitivity function (e.g., β1 < 0) with a fast-receding hydrograph at late recession 
(red line) and (a″) a concave low-flow storage–discharge relation (red line). (b) A catchment, with a relatively thick typical saturated thickness and/or with a large 
typical hydraulic gradient in its deep slow-moving aquifer (excessive convergence of hydraulic head from hillslope toward stream reflects a large gradient), sustains a 
large amount of diffusive contribution of upland hillslope groundwater to low flow. (b′) This type of catchments may show a large nonlinearity of low-flow sensitivity 
function (e.g., β1 > 0) with a slow-receding hydrograph (blue line) and (b″) a convex low-flow storage–discharge relation (blue line). Our conceptualization implies 
that upland groundwater through deep slow-moving aquifer could bypass and/or feed the shallow riparian aquifer that contains low-land permeable sedimentary 
deposits above the bedrock. Our theoretical analysis (Section 3.2), however, neglects the groundwater interaction between deep slow-moving aquifer and shallow 
riparian sedimentary deposit aquifer (light blue arrows; see the discussion in Section 5.5). Note that these two schematizations consider identical catchment attributes 
(e.g., slope, geology) for the sake of simplicity of comparison. In reality, differences in groundwater hydraulics shown in this figure (Hs vs. Hd and is vs. id) depend on 
differences in catchment attributes (see Section 3.4).
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Building on classical Dupuit approximation, in each catchment, 𝐴𝐴 𝐴𝐴d∕𝐴𝐴 can be calculated as 𝐴𝐴 (𝑇𝑇d.𝑖𝑖d)∕(𝑇𝑇d.𝑖𝑖d + 𝑇𝑇s.𝑖𝑖s) 
and 𝐴𝐴 𝐴𝐴s∕𝐴𝐴 as 𝐴𝐴 (𝑇𝑇s.𝑖𝑖s)∕(𝑇𝑇d.𝑖𝑖d + 𝑇𝑇s.𝑖𝑖s) . Td (and id) and Ts (and is) refer to time-invariant transmissivity (and hydrau-
lic gradient) of the catchment’s representative deep slow-moving aquifer and representative shallow riparian 
fast-moving aquifer, respectively. Thomas et al. (2013) related the time constants of the linear reservoir explain-
ing a catchment low-flow condition to the reservoir’s transmissivity (T), porosity (θ), drainage length (D), and the 
fractural reservoir area contributing to low flow (α), such that τ depends on 𝐴𝐴 𝐴𝐴 × 𝜃𝜃∕𝑇𝑇 ×𝐷𝐷 . Building on this, we 
assume that 𝐴𝐴 𝐴𝐴s∕𝐴𝐴d is linearly dependent on 𝐴𝐴 𝐴𝐴d𝐷𝐷d𝛼𝛼s𝜃𝜃s∕𝐴𝐴s𝐷𝐷s𝛼𝛼d𝜃𝜃d , where s and d subscripts refer to the properties of 
shallow fast-moving riparian sedimentary deposit aquifer and deep slow-moving aquifer, respectively. We also 
assume that at the low-flow condition, the variability of drainage length between the two aquifers is negligible, 
compared to T (and α,θ) variations between the two aquifers, which implies that 𝐴𝐴 𝐴𝐴s∕𝐴𝐴d is linearly dependent on 

𝐴𝐴 𝐴𝐴d𝛼𝛼s𝜃𝜃s∕𝐴𝐴s𝛼𝛼d𝜃𝜃d . With replacing 𝐴𝐴 𝐴𝐴d∕𝐴𝐴 , 𝐴𝐴 𝐴𝐴s∕𝐴𝐴 , and 𝐴𝐴 𝐴𝐴s∕𝐴𝐴d by their associated terms in Equation A8 in Supporting 
Information S1, we obtain

𝛽𝛽1 =

𝑇𝑇d

𝑇𝑇s
⋅

𝑖𝑖d

𝑖𝑖s

(
𝛼𝛼s

𝛼𝛼d
⋅

𝜃𝜃s

𝜃𝜃d
⋅

𝑇𝑇d

𝑇𝑇s
− 1

)2

(
𝛼𝛼s

𝛼𝛼d
⋅

𝜃𝜃s

𝜃𝜃d
⋅

𝑖𝑖d

𝑖𝑖s

(
𝑇𝑇d

𝑇𝑇s

)2

+ 1

)2 (5)

See Figure 3 for further details and conceptualization of the two linear reservoir model developed in this paper. 
Note that the parallel (or independent) nature of the two reservoirs considered here neglects the potential interac-
tions between the two aquifers (light blue arrows in Figure 3 reflect such an interaction). Furthermore, Equation 5 
is valid under the assumptions and approximation stated above. These limitations will be further discussed in 
Section 5.5.

3.3. Empirical Analysis: Estimation of Sensitivity Function and Storage–Discharge Relation

In this study, the sensitivity function (g(Q)) and its nonlinearity in a given catchment, at both early and late 
recession stages, were estimated by performing a piecewise-weighted linear regression algorithm (Figure 2). The 
algorithm uses the ensemble characteristics of many recession events (point-cloud), binning the entire data, and 
fits a piecewise function to different segments of the binned data (as suggested in Kirchner, 2009). This approach 
focuses on the time-invariant (or central tendency of) flow dynamics at early and/or late recession stages to 
delineate a “typical” nonlinearity value for a given catchment rather than delineating one nonlinearity value for 
each event (see Kim et al., 2023 for differences and similarities between the two approaches of the nonlinearity 
delineation). Here, in combination with piecewise-weighted linear regression, we used six different widely used 
methods for extracting recession events, estimating recession rate (𝐴𝐴 −𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑 ), and fitting a piecewise function to 
different segments of sensitivity function. This was done to investigate whether our conclusions are robust against 
different derivation techniques of sensitivity function nonlinearity. In the next subsection, we introduce our Base 
Case methodological scenario. Five other variants of the estimation of sensitivity function and its nonlinearity are 
explained in Text S2 in Supporting Information S1.

3.3.1. Base Case Methodological Scenario

3.3.1.1. Recession Event Extraction

In our base case scenario (denoted as “Base Case” in the remainder of this paper), we extracted the streamflow 
recession data from 1,137 study catchments from 1981 to 2019. For each catchment, we first computed the reces-
sion rate (𝐴𝐴 −𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑 ) or the time derivative of streamflow (Q), using constant time step, and added the constraint 
that both 𝐴𝐴 −𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑 and Q must monotonically decrease for at least five consecutive days. The periods satisfying 
this condition were identified as the “recession events.” We also removed the first 3 days of each recession event 
from our analysis. These two constraints minimize the chance of the selection of recession events in which the 
contribution of surface flow and precipitation (P) is considerable. Then, we excluded all catchments with less 
than 50 acceptable recession events during the study period (1981–2019). Similarly, several other studies used 
the same criteria to extract recession events (see Tashie et al., 2020 for more information and justification of this 
methodology).

Additionally, to minimize the impact of ET on the selected recession events, we only considered catchments 
in which the daily average ET during the growing season (May–September) is smaller than twice the growing 
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season daily average streamflow (i.e., growing season ET/Q < 2). Note that only a small portion of estimated 
catchment-wide ET may impact the catchment-scale hydraulic storage at late recession (or low-flow condition). 
For example, Wlostowski et al. (2021), in delineating the low-flow sensitivity function, assumed that only 25% 
of estimated catchment-wide ET could impact the hydraulic storage that contributes to low flow. Additionally, 
recent research showed that ERA5-L-assimilated data employed in our study generally overestimate the actual ET 
across North America (Lu et al., 2021; Martens et al., 2020). Therefore, we expect that the actual ET impacting 
late recession is much smaller than the estimated catchment-wide ET using ERA5-L and smaller than streamflow 
in catchments that passed ET/Q < 2 filters during the growing season. In Section 5, we further discuss the influ-
ence of this catchment selection filter on our conclusion and generalization.

3.3.1.2. Estimation of Sensitivity Function Parameters

In order to estimate the sensitivity function parameters, we followed a series of steps. For each catchment that 
passed the above constraints, the extracted recession events and their pairs of 𝐴𝐴 log

(
−

𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑

𝑑𝑑

)
 and log(Q) were used 

to estimate g(Q) function and its nonlinearity. The quantile of log(Q) was binned into 25 bins, while the standard 
error and mean of 𝐴𝐴 log

(
−

𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑

𝑑𝑑

)
 within each bin were calculated. We removed those bins in which the standard 

error is larger than half of the mean (in a manner similar to Kirchner, 2009). Then, the piecewise linear regression 
analysis (using the “segmented” package in R) was used to (a) identify a statistically significant breakpoint, which 
conceptually refers to the streamflow at which the (nonlinearity of) catchment’s sensitivity function alters and (b) 
fit two linear lines to the binned averages before and after the breakpoint in log–log space of sensitivity function 
g(Q) and streamflow (Q). Note that for the catchments where one breakpoint is deemed statistically significant, 
the algorithm sets an arbitrary initial breakpoint and then estimates the actual breakpoint iteratively. In fitting two 
linear lines to the binned averages before and after the breakpoint, the piecewise linear regression was weighted 
by the reciprocal of the square of the standard error of 𝐴𝐴 log

(
−

𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑

𝑑𝑑

)
 in each bin. The uncertainty bounds of each 

line were also calculated using the estimated standard error (see Kirchner, 2009 for more details).

We denoted the slopes of regression lines on the left and right of the breakpoint as β1 and β2, respectively, where 
β1 refers to the typical nonlinearity of sensitivity function at low-flow conditions (or at late recession), and β2 
refers to the typical nonlinearity of sensitivity function at early recession. a1 and a2 were also identified as the 
intercepts of two linear lines. Figure 2 shows two examples of β1 and β2 estimation using the Base Case approach. 
We further excluded the catchments that (a) did not display a breakpoint (only one catchment among our study 
catchments that passed previously mentioned filters), (b) the discharge value of the identified breakpoint is below 
20 percentile or above 80 percentile of discharge values of all recession events, or (c) the standard error of the 
first linear slope (β1) is larger than 0.1. In the end, 78 catchments, out of the initial 1,137 catchments, remained 
in the Base Case analysis. Table S1 in Supporting Information S1 reports (a) the number of catchments remained 
after applying the filters of different methods, and (b) the ranges of estimated nonlinearity of sensitivity function 
using different methods.

3.3.1.3. Estimation of Storage–Discharge Relation

To estimate the low-flow storage–discharge relation in a given catchment, we used Equation 3 and the estimated 
parameters of low-flow sensitivity function (a1 and β1). Here, the estimated storage (S − S0) in a given catch-
ment refers to the catchment’s active (or hydraulic) storage during late-recession flow (i.e., calculated based on 
discharge values and recession parameters before the breakpoint, see blue line in Figure 2). S0 conceptually refers 
to a minimum storage corresponding to the minimum of recession flow values extracted along all recession 
events of a catchment. Figures 2c and 2d show two examples of the estimation of storage–discharge relations at 
low flow for two catchments with contrasting β1 values.

3.4. Empirical Analysis: Developing a New Index

We developed a dimensionless index, the GSI, to compare among the catchments the ratio of upland hillslope 
groundwater subsidy, through the deep slow-moving aquifer, to groundwater contribution through shallow ripar-
ian sedimentary deposit aquifer. To test our overarching hypothesis, the components of GSI should be the critical 
zone attributes that were known to be relevant to the nonlinearity of sensitivity function (or that of recession 
hydrograph). H. Li and Ameli (2022) showed that catchment-scale average slope (S [–]), hydraulic conductivities 
of soil (Ksoil [L/T]) and deep geological formation (Kd [L/T]), soil thickness (ST [L]), water surplus (WS [L]), and 
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snow fraction (SF [–]) are among the governing factors of hydrograph recession nonlinearity. In exploring these 
factors, they used continental-scale observational data and a statistical variable importance method that acknowl-
edges causality and interaction among attributes (i.e., Marginal Contribution Feature Importance). Furthermore, 
Wlostowski et al. (2021) synthesized the low-flow-related knowledge gained over 15 USA-CZO sites and qual-
itatively concluded that catchments with high values of sensitivity function (or potentially small β1) receive 
most of their precipitation as rain and contain low-permeable clay-rich deep geology. In contrast, sites with low 
values of sensitivity function (or potentially large β1) receive the majority of precipitation as snow and have 
more permeable deep geology. Their qualitative synthesis simply suggested that β1 is positively associated with 
SF × Kd. Hence, Ksoil, Kd, ST, SF, WS, and S can be the components of an index able to explain the nonlinearity 
of sensitivity function. Note that in the previous studies focused on identifying the dominant drivers of recession 
nonlinearity, soil thickness (ST) was used and identified as an important factor. In this study, instead, we used 
riparian SDT data due to the relevancy of these data to flow contribution through shallow riparian sedimentary 
deposit aquifer. The references to the source data and the algorithms used to calculate catchment-scale average 
values of all six attributes were discussed in Sections 2.2–2.4.

GSI, or other indices that explain how a catchment functions hydrologically, should acknowledge the hydrologic 
interactions among critical zone attributes relevant to the given function (as discussed and showcased in Janssen 
and Ameli (2021) for storage, partitioning, and discharge functions). Undoubtedly, the nonlinearities of the sensi-
tivity function and storage–discharge relation cannot be sufficiently explained by one critical zone attribute alone 
or a random composition of the attributes without acknowledging the domain knowledge. Instead, it should be 
explained by the index that acknowledges the domain knowledge on hydrologic interactions—among critical zone 
attributes—relevant to the nonlinearity of storage–discharge relation. Furthermore, to explore our hypothesis, a 
catchment’s GSI should reflect the ratio of groundwater contribution through a representative deep slow-moving 
aquifer to groundwater contribution through a representative shallow riparian sedimentary deposit aquifer (i.e., 

𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s based on Dupuit approximation). In this section, we explain how we use (a) the domain knowledge 
relevant to storage and discharge hydrologic functioning and (b) the critical zone attributes known to affect the 
nonlinearity of sensitivity function, in order to estimate 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s and ultimately calculate GSI. Addition-
ally, in Text S3 in Supporting Information S1, we used the same critical zone attributes to develop two alterna-
tive indices (I1, I2) using alternative strategies for combining the attributes, without acknowledging the domain 
knowledge. In Section 4, we report the efficiency of our original index (GSI) and two alternative indices (I1, I2) 
in explaining β1.

Td, in a given catchment, is equal to the product of saturated hydraulic conductivity and typical saturated 
thickness (Hd in Figure  3) of the representative deep slow-moving aquifer. For the first part of the product, 
we used catchment-scale average saturated hydraulic conductivity of deep geological formation (Kd) [L/T] (see 
Section 2.4). Regarding the second part, the lower boundary of deep aquifer (e.g., bedrock aquifer) is not known 
(Condon et al., 2020) and there is no available metric that approximates the aquifer’s average saturated thickness. 
We utilized domain knowledge to estimate Hd by analyzing how climatic, geological, and topographical attributes 
interact and impact deep storage. Previous field and modeling literature suggested that Hd (or deep slow-moving 
aquifer storage) depends on (a) the long-term average magnitude of recharge to groundwater system, (b) snow 
fraction, and (c) catchment slope (e.g., Ameli et al., 2018; Hopp & McDonnell, 2009; Wlostowski et al., 2021). 
Recharge magnitude is associated with long-term average water surplus and the hydraulic conductivity contrast 
at the soil–bedrock (or soil-deep geological formation) interface as suggested by Hopp and McDonnell (2009) 
and later Ameli et al. (2015). Indeed, for two catchments with identical long-term average water surplus (e.g., 
two adjacent catchments), the one with a larger hydraulic conductivity contrast (i.e., larger 𝐴𝐴 𝐴𝐴soil∕𝐴𝐴d and all else 
being equal) may drain a lesser portion of water surplus vertically into deep slow-moving aquifer. Therefore, a 
large magnitude of recharge into deep aquifer requires both large water surplus and small hydraulic conductivity 
contrast. This implies that Hd is positively associated with 𝐴𝐴

(
WS

𝐾𝐾soil∕𝐾𝐾d

)
 . Hence 𝐴𝐴 𝐴𝐴d

′s association with WS and with 
𝐴𝐴 𝐴𝐴soil∕𝐴𝐴d is considered to be nonlinear (through interaction), meaning that 𝐴𝐴 𝐴𝐴d

′s association with WS varies at 
different levels of 𝐴𝐴 𝐴𝐴soil∕𝐴𝐴d (and 𝐴𝐴 𝐴𝐴d

′s association with 𝐴𝐴 𝐴𝐴soil∕𝐴𝐴d varies at different levels of WS). In addition, 
Wlostowski et al. (2021) synthesis across USA-CZOs suggested that snow-dominated catchments may have more 
efficient recharge into upland hillslopes groundwater systems compared to rain-dominated catchments (i.e., Hd 
is positively associated with SF). Moreover, Ameli et  al.  (2018) combined extensive hydrometric and tracer 
observations with a sophisticated physically based model to explore the causal relationship between critical zone 
attributes and deep aquifer storage. They showed that in catchments with sufficiently large recharge magnitude 
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(or large WS and small 𝐴𝐴 𝐴𝐴soil∕𝐴𝐴d ), the storage of deep slow-moving aquifer increases with catchment slope S (i.e., 
Hd is positively associated with 𝐴𝐴

WS.𝑆𝑆

𝐾𝐾soil∕𝐾𝐾d
 ). Based on these scientific evidence, Hd should be positively associated 

with 𝐴𝐴
WS.𝑆𝑆.SF

𝐾𝐾soil∕𝐾𝐾d
 , where the latter could be used to compare the relative magnitude of Hd among catchments. We will 

further discuss the “comparative” nature of our strategy to develop a new index at the end of this section. Note 
that 𝐴𝐴 𝐴𝐴d

′s association with each component of the above term is nonlinear (through interaction), meaning that 
𝐴𝐴 𝐴𝐴d

′s association with each component varies at different levels of other components.

Ts, in a given catchment, is approximated as the product of catchment-scale average saturated soil hydraulic 
conductivity (Ksoil [L/T]) and riparian SDT [L]. In doing so, we approximated the hydraulic conductivity of 
shallow riparian sedimentary deposit aquifer with the catchment-scale soil hydraulic conductivity as the data 
on sedimentary deposit saturated hydraulic conductivity were not available. In our comparative framework in 
delineating GSI, this implies that a catchment with a larger catchment-scale soil conductivity (which includes 
riparian sedimentary deposits) has a larger riparian sedimentary deposit conductivity compared to a catchment 
with a smaller catchment-scale soil hydraulic conductivity. Additionally, we assumed that the average saturated 
thickness in the riparian sedimentary deposit aquifer (Hs in Figure 3) is equal to the riparian SDT on the top of 
the bedrock.

𝐴𝐴 𝐴𝐴d∕𝐴𝐴s , in a given catchment, can also be considered to be positively associated with 𝐴𝐴
WS.𝑆𝑆

𝐾𝐾soil∕𝐾𝐾d
 . Indeed, for two catch-

ments with identically large recharge into hillslopes deep groundwater system (i.e., large WS and small 𝐴𝐴 𝐴𝐴soil∕𝐴𝐴d ), 
the one with a steeper slope may show a larger value of 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s compared to the one with a flatter slope wherein 

𝐴𝐴 𝐴𝐴d and 𝐴𝐴 𝐴𝐴s can be of the same magnitude. Again here 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s association with each component of the above term is 
nonlinear (through interaction), meaning that 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s association with each component varies at different levels of 
other components.

By replacing the terms which are positively associated with 𝐴𝐴 𝐴𝐴d , 𝐴𝐴 𝐴𝐴s , and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s , the GSI takes the form as

GSI =
𝐾𝐾d × 𝑆𝑆 × WS × SF

𝐾𝐾soil × SDT
 (6)

Furthermore, the individual components in Equation 6 were normalized before GSI calculation. This implies that 
all attributes vary between 0 and 1. This treatment ensures that no attribute has excessive weight toward the index 
value due to their disproportionately large or small values, while the attributes’ spatial variability and ultimately 
GSI’s spatial variability remained unchanged.

We have to clarify that the value of GSI in a given catchment cannot reflect the exact ratio of upland hillslope 
groundwater subsidy to riparian shallow groundwater contribution during low-flow condition. However, GSI is a 
reasonable proxy to compare, among catchments, their relative sources of low flow. In our comparative approach, 
a catchment with a larger value of GSI has a larger extent of upland hillslope groundwater subsidy (through deep 
slow-moving aquifer) relative to shallow groundwater contribution (through riparian sedimentary deposit aqui-
fer), in comparison to a catchment with a lower value of GSI. We hypothesize that the former catchment shows 
a larger β1 than the latter (see the conceptualizations in Figure 3). Hence, in the spatial comparative analysis 
proposed in our paper, GSI can be used to explore the association between the spatial (among catchments) varia-
bility in the relative sources of low flow and the spatial (among catchments) variability in β1.

3.5. Empirical Analysis: Spatial Association Between GSI and β1

In a spatial between-catchment analysis, we calculated the Spearman correlation between GSI (Section 3.4) and 
the estimated β1 (Section 3.3), across the study catchments selected by the Base Case analysis (Section 3.3). This 
analysis was repeated for two alternative combinations used to develop an index of groundwater subsidy (I1, I2; 
Text S3 in Supporting Information S1) and five alternative methodological scenarios used to estimate β1 (Text S2 
in Supporting Information S1).

4. Results
In this section, we first explain the results of our theoretical analysis conducted using two linear reservoir model 
(Section 4.1). Then, we explore and compare the estimated values and the spatial pattern of β1 among different 
methodological scenarios considered in this paper (Section 4.2). Next, we describe the spatial pattern of the GSI 
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as well as the spatial patterns of GSI’s components across the study catchments (Section 4.3). Finally, we explore 
how GSI is associated with the nonlinearity of the sensitivity function (and the functional relation between stor-
age and discharge) in Section 4.4.

4.1. Theoretical Analysis: Two Parallel Linear Reservoir Model

The two linear reservoir model suggests that β1 depends on 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s , 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s , and 𝐴𝐴 𝐴𝐴s∕𝐴𝐴d (Figure  4 and 
Equation  5). Indeed, β1 generally increases with 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s by a threshold-like relationship.  Where 

𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s < 0.5 , β1 remains small, and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s and 𝐴𝐴 𝐴𝐴s∕𝐴𝐴d have minimal influence on β1. This implies that for 
a catchment with a relatively thin saturated thickness and/or with a small hydraulic gradient in its representative 
deep slow-moving aquifer (e.g., the catchment shown in Figure 3a), β1 is small and the fractional area of hillslopes 
contributing groundwater subsidy through deep slow-moving aquifer may have minimal impact on β1. Where 

𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s > 0.5 , β1 significantly increases with an increase in 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s , particularly for large values 
of 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s or 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s . This suggests that for two catchments with a similarly thick typical saturated thickness and 
similarly large typical hydraulic gradient in their representative deep slow-moving aquifers (e.g., the catchment 
shown in Figure 3b), the one with a larger fractional area of hillslopes contributing groundwater to low flow and/
or with a relatively larger porosity of deep slow-moving aquifer may experience a larger β1.

4.2. Empirical Analysis: The Estimation of β1

In this paper, we estimated the nonlinearity of sensitivity function at low flow (β1) using six different methods, 
as described in Section 3.3 and Text S2 in Supporting Information S1. The median of estimated β1 using each 
method does not differ significantly from one method to the other and varies between 0.08 and 0.37 (Table S1 in 

Figure 4. The theoretical relation between the low-flow sensitivity function nonlinearity (β1) and 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s (a) for 
different levels of 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s (and θs = θd) and (b) for different levels of 𝐴𝐴 𝐴𝐴s∕𝐴𝐴d (and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s = 99 ). These plots were generated based 
on Equation 5 derived using the two linear reservoir model. In this theoretical conceptualization, low flow or late-recession 
flow in a given catchment is treated as the outcome of the groundwater flow contributions from two parallel linear reservoirs: 
(1) catchment’s representative deep slow-moving aquifer that emulates hydraulic properties of deep low-permeable strata 
(e.g., bedrock, lower soil horizons) and connects upland hillslope groundwater subsidy to stream, and (2) catchment’s 
representative shallow fast-moving riparian sedimentary deposit aquifer. Td (and id) and Ts (and is) refer to typical 
transmissivity (and hydraulic gradient) of the catchment’s representative deep slow-moving aquifer and the representative 
shallow riparian fast-moving aquifer, respectively. Note that Td is equal to 𝐴𝐴 𝐴𝐴d  × Hd, where Kd refers to the average saturated 
hydraulic conductivity of deep geological formation and Hd (shown in Figure 3) refers to average typical saturated thicknesses 
of the representative deep slow-moving aquifer. Ts is equal to 𝐴𝐴 𝐴𝐴s  × Hs, where Ks refers to the saturated hydraulic conductivity 
of low-land sedimentary deposits above the bedrock in the vicinity of the stream (here is assumed to be equal to Ksoil, see 
Section 3.4) and Hs (shown in Figure 3) refers to typical saturated thicknesses of the representative shallow riparian aquifer. 
αd and αs refer to the fractural area of the deep slow-moving aquifer and shallow riparian fast-moving aquifer contributing 
groundwater to low flow. 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s for each catchment can be roughly estimated using the catchment-scale average proportion of 
hillslope versus riparian zone (as explained in Section 2.4). 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s = 99 represents the median value of 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s across all study 
catchments in our paper. This ratio was used in this figure to generate some of the potential scenarios on the relation between 
β1 and 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s . In reality, this ratio might be much smaller than 99 in many catchments, as the entire hillslope area of 
a catchment may not contribute groundwater flow to late-recession flow through deep slow-moving aquifer. θd and θs refer 
to the catchment-scale porosity of the representative deep slow-moving and shallow fast-moving aquifers. Dashed line shows 
β1 = 0.5.
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Supporting Information S1). Generally, ETS, Base Case, and M25E methods estimate a wider range of β1 values 
than M7D and Bootstrap methods. This can be related to more restricted criteria and filters used in M7D and 
Bootstrap methods in selecting acceptable events or in excluding catchments with a large event-to-event varia-
tion, leading to a smaller number of catchments remaining for estimating β1 in M7D and Bootstrap analyses. It is 
important to note that most of arid catchments, located in central USA and Canada as well as in southern USA, 
did not pass the growing season ET/Q < 2 filter and were excluded from all six methods’ analyses (Figure 5).

Figure 5a shows the spatial pattern of β1 estimated using Base Case and Bootstrap methods. Note that all catch-
ments that passed the Bootstrap method’s filters (shown by stars in Figure 5a) also passed the Base Case method 
filters. Additionally, at these catchments, both Base Case and Bootstrap methods estimated almost identical β1 
values. Among the catchments used in the Base Case analysis, the estimated values of β1 are on average higher 
in British Columbia, Ontario, Quebec, Nova Scotia, and Newfoundland (all in Canada) than in other regions 
(Figure 5a). Most of the catchments south of 42°N have β1 values close to (or lower than) zero (Figure 5a).

4.3. Empirical Analysis: Groundwater Subsidy Index

The distribution of GSI (Equation 6) shows a large spatial variability of this index across our 1,137 study catch-
ments (Figure  6). Catchments located on Canada’s West Coast, Rocky Mountains, and the Northwest of the 

Figure 5. The spatial map of β1, and the ensembles of low-flow storage–discharge relations for groups of catchments with 
contrasting β1 values. (a) The spatial map of β1 estimated using Base Case method (78 catchments). Stars denote the 37 
catchments that were used in both Base Case and Bootstrap analyses. Note that both Base Case and Bootstrap methods 
estimated identical β1 values at these 37 catchments. Squares denote the catchments that were only used in Base Case 
analysis. The ensembles of low-flow storage–discharge relations for groups of catchments with (b) β1 ≤ 0 (concave storage–
discharge), (c) 0 < β1 ≤ 0.5 (slightly convex storage–discharge), and (d) β1≥ 0.5 (convex storage–discharge). The median 
values of Log GSI are 0.76, 1.92, and 2.63, respectively, for these three groups. Note that storage and discharge represent 
horizontal axes and vertical axes, respectively, in storage–discharge plot.
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United States exhibit the highest values of GSI on average (Figure 6g). High to moderate GSI values generally 
appear in Canada’s East Coast and the Northeast of the United States. The lowest GSI values are found in the 
Gulf Coast of the United States and the western provinces of Canadian Prairie. The spatial variability of GSI is 
the result of the spatial variabilities of all of its components. Indeed, GSI and the scientific concept it conveys 
are not disproportionately explained by the climatic components or slope but rather explained as a result of the 
interaction among climatic, topographical, and geological components. The Spearman correlations between GSI 
and its components across the study catchments are 0.71 (GSI vs. 𝐴𝐴 𝐴𝐴d∕𝐴𝐴soil ), 0.69 (GSI vs. S), 0.68 (GSI vs. WS), 
0.47 (GSI vs. SF), and −0.34 (GSI vs. SDT). The Spearman correlations among the individual components that 
make up GSI are generally much smaller. A total of 20 pair correlations are between −0.20 and 0.20, except for 
S versus WS (with ρ = 0.56) and SF versus SDT (ρ = 0.47). The weak rank correlations among these individual 
components that make up GSI, despite the relatively large correlations between GSI and its components, may 
suggest that each component of GSI, including (surficial) geological attributes, shares a large amount of inde-
pendent information with GSI. Therefore, a robust explanation of GSI requires the inclusion of all components as 
each component defines a unique and independent dimension of the whole concept that the GSI conveys.

The individual components of GSI have distinct spatial patterns. The hydraulic conductivity of deep geological 
formation is distinctively lower in the Prairie Provinces of Canada compared to other regions (Figure 6a). The 
catchment average slope is significantly higher at the Canada’s West Coast and the Canadian portion of Rocky 
Mountains compared to other regions (Figure 6b). Values of water surplus are the largest along the Canada’s West 
Coast and the Northwest of the United States. Water surplus decreases to the lowest values toward the central 
part of the continent (e.g., Prairie Provinces of Canada and USA; Figure 6c). Snow fraction generally increases 
from south to north, with the exception that catchments in major mountain ranges (e.g., Rocky Mountains) have 
higher snow fraction values compared to other catchments of the similar latitude (Figure 6d). Highly conductive 

Figure 6. The spatial patterns of individual components of Groundwater Subsidy Index (GSI; a–f) and log GSI (g) along 1,137 study catchments. GSI’s components 
include catchment-scale average slope (S [–]), hydraulic conductivities of soil (Ksoil [L/T]) and deep geological formation (Kd [L/T]), riparian sedimentary deposit 
thickness (SDT [L]), water surplus (WS [L]), and snow fraction (SF [–]). Equation 6 was used to calculate GSI from its components (Section 3.4). The references to the 
source data and the algorithms used to calculate catchment-scale average values of all six components were discussed in Sections 2.2–2.4.
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soils are found in South Eastern and South Western of Canada (Figure 6e). Catchments with large values of SDT 
are found in Prairie Provinces of Canada, Canadian territories, and Gulf Coast of the United States (Figure 6f).

4.4. Empirical Analysis: The Spatial Association Between GSI and β1

The positive (nonlinear) spatial associations between GSI and β1 are evident with all methodological scenarios 
used to estimate β1 (Figure 7). This positive spatial association is strong for Base Case (Ꝭ = 0.66), Bootstrap 
(Ꝭ = 0.70), and EB (Ꝭ = 0.68) and is moderately strong for M7D (Ꝭ = 0.57) and M25D (Ꝭ = 0.56). The positive 
spatial association for ETS (Ꝭ = 0.35) is not as strong as other methods. This might be due to smoothening of the 
late-recession pattern, which may happen in some catchments when using ETS method, as discussed in Text S2 
in Supporting Information S1. The spatial association between GSI and β1 is stronger than the spatial association 
between each component of GSI and β1, regardless of the method used to estimate β1 (Table S3 in Supporting 
Information S1). This implies that none of GSI’s components could explain β1 as strongly as GSI. Indeed, β1 
is strongly associated with the way the individual components interact together rather than with the individual 
component alone. For example, for Bootstrap analysis, GSI’s association with β1 (Ꝭ = 0.70) is larger than water 
surplus’s association with β1 (Ꝭ = 0.59), slope’s association with β1 (Ꝭ = 0.43), and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴soil association with β1 
(Ꝭ = 0.42). Additionally, Table S2 in Supporting Information S1 suggests that two alternative indices of ground-
water subsidy (i.e., I1, I2), that used GSI’s components but did not acknowledge the domain knowledge in the way 
that GSI did, cannot have associations with β1 as strong as GSI.

Likewise, GSI is associated with the nonlinearity of storage–discharge relation (1  −  β1), which reflects the 
concavity versus convexity of low-flow storage–discharge relation, where storage and discharge represent hori-
zontal axes and vertical axes, respectively. The median GSI value for the group of catchments with β1 less than 
zero (or 1 − β1 > 1) is pronouncedly smaller than the median GSI value for the group of catchments with β1 larger 
than 0.5 (or 1 − β1 < 0.5; Figures 5b–5d). For the group of catchments with β1 ≤ 0, log GSI has a median value of 
0.76, and the ensemble of storage–discharge relation is concave (Figure 5b). Among the catchments used in the 
Base Case analysis, those located south of 42°N and some catchments in Canadian territories are the member of 
this group (Figure 5a) with concave storage–discharge relation. Where 0 < β1 ≤ 0.5, log GSI has a median value 
of 1.92, and the ensemble of storage–discharge relation is convex but very close to linear (Figure 5c). Among 

Figure 7. The scatter plots and Spearman (nonlinear) correlation coefficients (Ꝭ) between β1 and Groundwater Subsidy Index (GSI) using six different methodologies 
used to estimate β1. See the description of the Base Case method in Section 3.3. The descriptions of other five methods are in Text S2 in Supporting Information S1. In 
each methodological variant, only one aspect of the Base Case scenario is modified at a time. For example, EB method uses Equal Binning (instead of quantile binning) 
to bin the data and ETS uses exponential time step (instead of constant time step) to calculate recession rate. Note that x-axes in all figures are in log scale; hence, our 
plots show that there is a nonlinear association between β1 and GSI.
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the catchments used in the Base Case analysis, those catchments located in the province of Newfoundland and 
Labrador of Canada, in addition to a few catchments in other locations (shown in yellow, green, and light blue; 
Figure 5a) are all the member of this group. For the group of catchments with β1 > 0.5, log GSI has a median 
value of 2.63, and the ensemble of storage–discharge relation of this group is more convex than the previous 
groups (Figure 5d).

5. Discussion
The influence of deep slow-moving aquifer (e.g., bedrock) connecting upland hillslope groundwater to 
mainstream—as an additional storage unit beyond that of shallow soil mantled aquifer—remained as a source 
of uncertainty for both low-flow storage–discharge relation and plant water use (Hahm et  al.,  2022; Rempe 
& Dietrich,  2018). Site-specific experimental analysis in intensively monitored sites suggested that upland 
hillslope groundwater subsidy through bedrock may contribute to low flow’s active and total storages and ulti-
mately to low-flow storage–discharge relation (Gabrielli et al., 2018; Hale et al., 2016). However, the extent of 
upland hillslope groundwater subsidy, and its influence on low-flow storage–discharge relation, varies from one 
catchment to the other (Gabrielli et al., 2018; Hale et al., 2016), depending on how the catchment climatic and 
physical attributes interact together (Ameli et al., 2018). In this paper, we focused on developing a quantitative 
framework and a similarity index to determine the extent of upland hillslope groundwater subsidy. The aim was 
to explore theoretically and empirically our overarching hypothesis over a wide range of catchment’s climatic 
and physical settings. Our hypothesis was that a larger extent of upland hillslope groundwater subsidy through 
deep slow-moving aquifer (e.g., bedrock), relative to groundwater contribution through shallow riparian sedi-
mentary deposit aquifer, increases the nonlinearity of sensitivity function (β1) and the convexity of low-flow 
storage–discharge relation from one catchment to the other. We discuss the findings of our hypothesis testing 
in Section 5.1. We also discuss the potential cause of the deviation in estimated β1 values in our empirical anal-
ysis from the range of values suggested by Boussinesq-based hydraulic groundwater theory (Section 5.2). The 
implications of our findings for evaluating drought vulnerability of landscapes in different climatic and physical 
settings as well as for assessing groundwater age and stream transit times are discussed in Sections 5.3 and 5.4. 
The limitations of our study and future directions will be discussed in Section 5.5.

5.1. Upland Hillslope Groundwater Subsidy Affects the Nonlinearity of Sensitivity Function and the 
Convexity (Shape) of Low-Flow Storage–Discharge Relation

Our theoretical analysis depicts that β1 generally increases, and the shape of low-flow storage–discharge rela-
tion varies from relatively concave to convex, with an increase in the ratio of groundwater contribution from 
deep slow-moving reservoir relative to shallow fast-moving reservoir (which is equivalent to an increase in 

𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s , 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s , and/or 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s ; Figure 4). Such influence is particularly strong where 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s is above 
a certain threshold. These theoretical influences on β1 can be attributed to the fact that the differences between the 
transmission timescales of linear reservoirs of a multilinear reservoir system control the nonlinear function that 
relates the system’s storage to the system’s discharge (Harman et al., 2009). In our case, the transmission times-
cale ratio of deep slow-moving to shallow fast-moving reservoirs (𝐴𝐴 i.e. 𝜏𝜏d∕𝜏𝜏s ) could control β1. The catchment’s 
β1 is large where the relative contribution of deep slow-moving reservoir, with a long transmission timescale, is 
large, which leads to distinct transmission timescales of deep slow-moving and shallow fast-moving reservoirs  
(𝐴𝐴 𝐴𝐴d∕𝐴𝐴s ≫ 1 ). On the other hand, for the catchment with a minimal contribution of deep slow-moving reservoir to 
low-flow discharge, one uniform transmission time-scale could explain the late-recession dynamics, leading to a 
small value of catchment’s β1 (e.g., β1 < 0.5 as shown by dashed line in Figure 4). Conceptually, these findings 
imply that the long tail of late recession or the significant convexity of low-flow storage–discharge relation (see 
Figures 3b′ and 3b″) is controlled by the extent of delayed groundwater contribution and can be sufficiently 
explained if (at least) one additional reservoir with a long transmission timescale being added to the existing 
fast-moving reservoir.

Overall, our theoretical analysis suggests that the relative extent of deep slow-moving groundwater contribution—
which is assumed to connect upland hillslope groundwater subsidy to stream in our study—increases the nonlin-
earity of sensitivity function and the convexity of low-flow storage–discharge relation. Our empirical analysis 
further verifies the theoretical finding. As GSI increases among catchments, the typical nonlinearity of low-flow 
sensitivity function and the convexity of low-flow storage–discharge increase (Figures 6b–6d and 7). Our findings 
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are consistent with the qualitative synthesis made by Wlostowski et al. (2021) across 15 USA-CZO sites. They 
concluded that large deep groundwater transmission from uplands through permeable hillslope bedrock leads to 
a low sensitivity to subsurface storage (or potentially large β1). In contrast, they demonstrated that the dominancy 
of fast and transient lateral water movement in the shallow soil, with a reduced recharge to deep aquifer, leads 
to a high stream low-flow sensitivity to subsurface storage (or potentially small β1). Additionally, Tague and 
Grant (2004) experimental analysis at Willamette River Basin in Oregon showed that catchments with damped 
stream response at low flow (i.e., large β1) are those with high ridgeline bedrock water table and large active 
bedrock storage and large bedrock hydraulic gradient (see Figure 3b for the conceptualization of such catch-
ments), and greater volume of bedrock old water contributing to low flow.

5.2. To What Extent Does Hydraulic Groundwater Theory Explain the Nonlinearity of Sensitivity 
Function and the Convexity of Low-Flow Storage–Discharge Relation?

Boussinesq-based hydraulic groundwater theory assumes that the catchment-scale storage–discharge relation 
follows that of a “representative” storage unit (or aquifer) whose hydraulic property (e.g., transmission timescale) 
is representative of the hydraulic properties of the collection of storage units (e.g., bedrock aquifer, riparian sedi-
mentary deposit aquifer) that make up a catchment. For example, this theory suggests that if one single horizontal 
unconfined aquifer, with an inverse incomplete Beta function as the initial condition, sufficiently represents 
the hydraulic properties of the collection of storage units that make up a catchment, the catchment’s low-flow 
storage–discharge behavior may reveal a nonlinearity of β1 = 0.5 (or b1 = 1.5). As another example, Harman and 
Sivapalan  (2009) analytically showed that if a thin unconfined aquifer sufficiently represents the catchment’s 
low-flow storage–discharge behavior (similar to Figure 3a), we may expect to see a catchment’s β1 smaller than 
zero (−1 < β1 < 0). While no continuous relationship was developed between β1 and hydrologically relevant 
catchment critical zone attributes before, hydraulic groundwater theory suggested a range of β1 between −1 and 
0.5 (or a range of b1 between 0 and 1.5) for different topography, geomorphology, geology, climate, and initial 
condition of the representative storage unit (see the review paper by Troch et al. (2013)).

The β1 range suggested by hydraulic groundwater theory could explain the low-flow dynamics of a large portion 
(but not all) of the catchments assessed in our empirical analysis (Figure 6a). In the Base Case analysis, the third 
quantile of the estimated β1 is 0.47 and the maximum estimated value is 1.60 (Table S1 in Supporting Informa-
tion S1). Bootstrap analysis, which selects only the catchments with minimal event-to-event variation at late 
recession (see Text S2 in Supporting Information S1), leads to a smaller third quantile of estimated β1 (equals to 
0.27) and a smaller maximum of estimated β1 (equals to 0.67; Table S1 in Supporting Information S1). In another 
empirical analysis, Wittenberg (1999) showed that the nonlinearity of storage–discharge relation dominating low 
flow (1 − β1 in Equation 3) could vary between 0 and 1.1 (or β1 varies between −0.1 and 1) along 80 catchments 
in Germany. The possibility of smaller than 0.5 (and negative) β1, or relatively concave storage–discharge relation 
dominating low flow, suggested by hydraulic groundwater theory, and estimated by the empirical study across 
Germany as well as our empirical analysis, may suggest that hydraulic groundwater theory might be sufficient 
to explain the nonlinearity of low-flow dynamics in a large portion of catchments. This is particularly true for 
the majority of catchments with a temporally stable relationship between log(g(Q)) and log(Q) (i.e., minimal 
event-to-event deviation from a typical β1). Kim et al. (2023) data-guided analysis in a single catchment study 
also depicted the validity of the Boussinesq model in explaining the late-recession flow dynamics. They showed 
that despite large event-to-event variability at early recession, during the late recession, the nonlinearity of events’ 
trajectories converges to a typical (or central tendency) nonlinearity that is not far from the one estimated by the 
Boussinesq model.

Our theoretical analysis suggests that the catchments with small β1 are those with a relatively small groundwater 
subsidy through deep slow-moving reservoir (showed by 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s  < 0.5 and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s  < 0.33 and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s  < 10; 
Figure  4). Our empirical analysis depicts that the catchments with estimated β1 values within the proposed 
range by hydraulic groundwater theory (i.e., β1 < 0.5) have a relatively small groundwater subsidy from upland 
hillslopes, with GSI values smaller than 10 and smaller than 50 for Base Case and Bootstrap analyses, respec-
tively (note that GSI can be as large as 5,000 among our study catchments; Figure 7). These findings are consist-
ent with that of Wittenberg (1999) who conceptually related the values of β1 smaller than 0.5 to relatively large 
storage capacity of shallow riparian aquifer (or relatively large Hs and Ts, see Figure 3a) and/or predominantly 
fast shallow subsurface flow such as macropores and subsurface stormflow within shallow soil mantled aquifer, 
with a reduced recharge into hillslopes deep slow-moving aquifer. Overall our theoretical and empirical findings, 
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and that of existing literature mentioned above, may suggest that hydraulic groundwater theory could explain the 
low-flow storage–discharge functionality in catchments with a relatively small (but still not negligible) extent of 
deep slow-moving groundwater subsidy sourced from upland hillslopes. One may conclude that in these catch-
ments as the contribution from the deep slow-moving aquifer is relatively small, one single representative storage 
unit (or a [non]linear reservoir) might be sufficient to represent the low-flow-related hydraulic properties of the 
collection of storage units that make up the catchment. Building on GSI definition (see Section 3.4), these catch-
ments may have a small slope and/or small recharge into deep slow-moving aquifer ( i.e., small 𝐴𝐴

WS×𝑆𝑆

𝐾𝐾soil∕𝐾𝐾d
 ).

However, hydraulic groundwater theory does not explain the entire range of estimated β1 in the empirical analysis 
of multiple studies, including ours. Wittenberg’s range of estimated β1 (−0.1 to 1) across Germany, Tague and 
Grant (2004) range of estimated β1 (0 to 2) across Willamette River Basin in Oregon, and the estimated β1 range 
in our empirical analysis (e.g., −0.87 to 1.6 for Base Case or −0.86 to 2.01 for ETS, see Table S1 in Supporting 
Information S1) go beyond the Boussinesq-based theoretical range (i.e., −1 < β1 < 0.5). Wittenberg (1999) and 
Chapman (1999) related β1 larger than 0.5 to large convergence of groundwater flow from hillslope toward ripar-
ian zone (which is equivalent to large 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s , see Figure 3b). Our theoretical analysis suggests that the 
catchments with a relatively large β1 have 𝐴𝐴 𝐴𝐴d × 𝑖𝑖d∕𝐴𝐴s × 𝑖𝑖s  > 0.5 and 𝐴𝐴 𝐴𝐴h∕𝐴𝐴r  > 10 or 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s  > 0.33 (Figure 4). More-
over, our empirical analysis shows that catchments with β1 value larger than 0.5 generally have large GSI values 
(larger than 10 and up to 5,000; Figure 7). It can be inferred where groundwater subsidy from upland hillslope 
becomes distinctly large, one single representative storage unit (or [non]linear reservoir) might not be sufficient 
to represent the hydraulic properties of the collection of storage units that make up the catchment. One potential 
explanation of β1 values larger than 0.5 in these catchments is the existence of two distinct representative storage 
units, with distinct transmission timescales. One representative storage unit with short transmission timescale 
represents the hydraulic properties of the collection of fast-moving storage units (e.g., shallow riparian sedimen-
tary deposit aquifers), and the second representative storage unit with long transmission timescale represents the 
hydraulic properties of the collection of slow-moving storage units (e.g., bedrock aquifer that connects the upland 
hillslope groundwater to mainstream). Expanding on GSI definition (see Section 3.4), these catchments may have 
large slopes and/or large recharges into deep slow-moving aquifer ( i.e., large 𝐴𝐴

WS×𝑆𝑆

𝐾𝐾soil∕𝐾𝐾d
 ).

Similar to the conclusions made by the theoretical analysis of Harman et al. (2009) and empirical analysis by 
Tashie, Pavelsky, and Emanuel (2020) on the nonlinearity of the overall recession, the findings in our study may 
raise a new hypothesis regarding the late-recession dynamics and nonlinearity. This hypothesis suggests that in 
catchments with a strong influence of secondary storage unit (with distinct hydraulic property than the primary 
storage unit), the current state of hydraulic groundwater theory, using one single representative storage unit, may 
not be able to sufficiently explain the long tail of late recession or a large convexity of low-flow storage–discharge 
relation. This hypothesis should be further explored in the future studies.

5.3. Groundwater Subsidy Index as a New Descriptor of Catchment Drought Vulnerability

Identifying the vulnerability of stream low flow in ungauged regions is a highly important goal. Tashie et al. (2020) 
related the nonlinearity of a catchment sensitivity function at low flow to the drought resistance of the catchment 
(i.e., larger β1 implies a more persistent nonzero low-flow events; as conceptualized in our Figure 3). Larger esti-
mated β1 along the Canada’s West Coast may suggest a higher drought resistance of these landscapes with convex 
storage–discharge relation, compared to highly draught vulnerable catchments located south of 42°N with a rela-
tively concave storage–discharge relation and a relatively small estimated β1 (Figure 5). However, the prediction 
of the nonlinearity of catchment sensitivity function in ungauged regions is challenging and available (machine 
learning) models fall short in this regard. As an example, H. Li and Ameli (2022) developed a Random Forest 
model with 18 predictors for predicting the nonlinearity of sensitivity function in ungauged regions and could not 
get an acceptable prediction accuracy (R 2 ∼ 40%). The large association between our proposed GSI and β1 may 
suggest that GSI—which was developed independent of streamflow observations and based on hydrologically rele-
vant interactions among critical zone attributes with globally available data—could be considered as a catchment 
drought vulnerability indicator in future regionalization practices and climate change impact assessment analyses.

5.4. Groundwater Subsidy Index as a Potential Descriptor of Stream Transit Time at Low Flow

A large catchment’s GSI generally reflects a relatively large groundwater contribution through deep slow-moving 
aquifer compared to shallower fast-moving aquifer. Deep slow-moving aquifer typically releases groundwater 
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with an old age. This may raise the hypothesis that in catchments with a large GSI, large contribution of old 
groundwater to low flow may override young groundwater contributions from shallower and faster compartments, 
leading to a disproportionately old stream low-flow transit time. At a wet and relatively permeable Scottish catch-
ment (with potentially large GSI), Birkel et al. (2015) showed that large contributions of upland hillslopes old 
groundwater disproportionately influence stream low-flow transit time. Later, Hale et al. (2016), by comparing 
15 nested research catchments in western Oregon, showed that catchments with permeable (fractured and weath-
ered) sandstone bedrock reveal a much longer stream transit time than those with tight volcanic low-permeable 
bedrock (everything else including, topography, climate, and land cover were similar among all 15 catchments). 
The former catchments, with potentially larger GSI, displayed an average of 6.2 years stream transit time, while 
the latter catchments, with potentially smaller GSI, showed an average of 1.8 years stream transit time. These 
experimental studies along with our empirical analysis’ findings may suggest that an index that explains the rela-
tive extent of groundwater contribution from deep slow-moving aquifer may inform stream low-flow transit time. 
Additionally, as discussed by Gabrielli et al. (2018)—and building on the previous studies’ findings on the lack of 
association between individual critical zone attribute (e.g., slope) and stream transit time (cf., Hale et al., 2016)—
an index able to explain the stream transit time should incorporate the hydrologically relevant interactions among 
catchment critical zone attributes. Our proposed GSI has both aforementioned characteristics and thus might be 
a good candidate to be used for comparing stream low-flow transit time among catchments. Hence, future work 
could explore the applicability of our GSI or similarly developed indices in explaining variations in stream transit 
time among catchments.

5.5. Limitations of the Study and Future Research Directions

5.5.1. The Use of Two Linear Reservoirs in Parallel in the Theoretical Analysis

Similar to Clark et al. (2009) and Roques et al. (2022), by assuming reservoirs in parallel, our theoretical anal-
ysis neglects the interactions between the two representative storage units (light blue arrows in Figure 3 reflect 
such an interaction). Where the vertical (downgradient) flow along the hillslopes’ bedrock is dominant, during 
low-flow condition, such an interaction might be minimal and shallow and deep units may independently contrib-
ute groundwater to stream. For example, Gabrielli et al. (2018) at the Maimai catchment measured the vertical 
bedrock flow and indicated that, while both storage units contribute groundwater to low flow, the groundwater 
age of shallow riparian aquifer (∼4 months) and deep slow-moving (or bedrock) aquifer (∼23 years) is distinc-
tively different at their discharge point. This shows a minimal water particle exchange (or velocity and water age 
independence) between deep slow-moving and shallow fast-moving aquifers. Although water age independence 
may not necessarily indicate the celerity (or excess energy propagation) independence between the two aquifers, 
such a significant water age difference may suggest that two distinct groundwater systems with distinct celerity 
patterns generate the Maimai’s low flow. Otherwise, if excess energy was being strongly propagated between the 
two storages (or both storages were part of one single groundwater system), we may have seen a relatively larger 
mixture of the old and younger particles. The interaction between the two storages, however, can be large where 
deep slow-moving aquifer (e.g., bedrock) exfiltrates shallow fast-moving riparian sedimentary deposit aquifer 
far away from the mainstream. Future works may consider a more complex reservoir system to incorporate both 
in-parallel (independent) and in-series (interacting) contributions from the reservoirs to theoretically explore 
more diverse mechanisms of low-flow dynamics.

The use of a linear reservoir to emulate the behavior of each storage unit might be a simplified representation of 
storage–discharge behavior. On one hand, the hydraulic of groundwater discharge from the representative shal-
low riparian fast-moving storage unit only under certain circumstances could be presented by a linear reservoir 
(Wittenberg, 1999). On the other hand, the hydraulic properties of upland hillslopes could be variable among 
hillslopes and the use of one linear reservoir could neglect the (potentially large) variability of transmission 
characteristics among hillslopes (Ranjram & Craig, 2022). Such a simplified treatment, however, allowed us to 
explore our overarching hypothesis, setting the stage for more realistic theoretical analyses in future works (e.g., 
the use of two nonlinear reservoirs or multiple (more than two) linear reservoirs).

The closed form equation obtained as the result of theoretical analysis (Equation 5) is valid under the assumptions 
and approximation stated in Section 3.2. The equation provides progress in linking β1 to a catchment’s hydraulic 
characteristics in a nonlinear manner. This equation allows β1 to vary continuously depending on catchment’s 
hydraulic characteristics across a large range, as opposed to previous studies’ findings which led to only certain 
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discrete values for β1 (or b1), varying across a small range (see discussion in Section 5.2). Our empirical analysis 
further clarified that certain discrete values for β1 (or b1), varying across a small range, cannot thoroughly explain 
observed values and ranges of β1 (or b1). Future research could build on Equation 5 and relax their assumptions 
and approximation to obtain a more realistic (and probably more nonlinear) analytical equation linking β1 (or b1) 
to the catchment’s hydraulic characteristics.

5.5.2. Exclusion of Most of Dry Catchments

Catchment and event selection criteria and filters, explained in Section 3.3, excluded most of dry catchments (with 
aridity index larger than 1.5) in central North America and southern USA from our empirical analysis. Particu-
larly, large evapotranspiration during growing season in these regions could limit understanding of low-flow 
generation processes from sensitivity function estimation. As daily-scale evapotranspiration is not much less than 
streamflow during growing season, little (or no) acceptable samples remain for sensitivity function estimation. 
Although the findings of our theoretical analysis could be generalized to dry catchments, our empirical analysis 
findings are not generalizable to dry catchments. Accurate and high-resolution (e.g., hourly) data set on evapo-
transpiration and streamflow can help estimating sensitivity function in arid regions by accurately identifying the 
sufficient number of recession events with hourly scale evapotranspiration smaller than streamflow (as done by 
Kirchner, 2009; Teuling et al., 2010), rather than excluding the arid catchments from the analysis.

5.5.3. Uncertainty in GSI Calculation

GSI, which was calculated using globally available data, was intended to estimate the relative groundwater flow 
contribution from upland hillslope versus riparian aquifer. However, this index can only be used to compare 
among catchments their relative sources of low flow and cannot estimate the exact value of groundwater contri-
butions from upland hillslope and or from riparian aquifer. As explained in Section 3.4, this shortcoming would 
not affect the findings of our empirical analysis, given the comparative nature of the analysis. Nonetheless, given 
the important eco-hydrological and hydro-geochemical implications of these groundwater flow contributions 
(See Van Meter et  al.,  2018), future works could focus on developing metrics able to directly quantify these 
contributions.

In deriving GSI, we leveraged available literature to justify the nonlinear associations between Hd (and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s ) 
and critical zone attributes as explained in Section 3.4. These nonlinear associations were incorporated through 
interactions among critical zone attributes. The importance of the interactions among critical zone attributes 
in explaining catchment hydrologic functions has been emphasized in the previous data-guided (Janssen & 
Ameli, 2021) and experimental (Hopp & McDonnell, 2009) studies. However, the associations between Hd (and 

𝐴𝐴 𝐴𝐴d∕𝐴𝐴s ) and critical zone attributes and ultimately between GSI and critical zone attributes may take additional 
nonlinear functional forms (e.g., exponential). While the current version of GSI, derived using interaction func-
tion alone, was able to explain a large portion of the spatial variability of β1, future research could focus on deriv-
ing the functional relationship between Hd (and 𝐴𝐴 𝐴𝐴d∕𝐴𝐴s ) and critical zone attributes, which then can be used to derive 
a potentially more comprehensive version of GSI (or other similar indices used to explain catchment hydrologic 
functions). Given the importance of the interaction among critical zone attributes showcased in the previous 
data-guided and experimental studies, we expect that the new functional relationship still includes the interac-
tion functionality and other nonlinear functionalities (if exist) are being added to the interaction term. Hence, 
the version of GSI derived in our paper could be considered as a simple (but nonlinear) version of a potentially 
more comprehensive and more nonlinear index which explains the relative ratio of upland hillslope groundwater 
subsidy to shallow fast-moving riparian groundwater.

5.5.4. Other Relevant Hypotheses Regarding the Nonlinearity of Sensitivity Function and the Shape of 
Storage–Discharge Relation at Low Flow

We acknowledge that there might be other valid conceptual models able to explain sensitivity function nonlinearity 
and storage–discharge relation at low-flow condition. Our theoretical analysis suggests that β1 is generally being 
controlled by the relative groundwater contributions (and the transmission timescale ratio) of slow-moving reser-
voir versus fast-moving reservoir. In our paper, we corresponded the slow-moving reservoir to an aquifer connect-
ing upland hillslope groundwater to mainstream. However, there might be geological conditions under which 
the slow-moving reservoir has nothing to do with the upland hillslopes, and both slow-moving and fast-moving 
reservoirs, with distinct transmission timescales, occur in the riparian area. Overall, further theoretical and empir-
ical research is needed to better understand diverse conceptual models of low-flow storage–discharge relation in 
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different environmental settings. This helps to develop a widely applicable and transferrable framework able to 
estimate low-flow storage–discharge relation in (un)gauged regions, improving our understanding of low-flow 
generation processes and improving the quality of model development and ultimately assessments of the impacts 
of global environmental changes on low flow.

6. Conclusion
We demonstrated, both empirically and theoretically, that with an increase in the relative extent of deep 
slow-moving groundwater subsidy, sourced from upland hillslopes, the nonlinearity of mainstream low-flow 
sensitivity to storage increased and the shape of low-flow storage–discharge relation altered from relatively 
concave to convex. The range of nonlinearities proposed by hydraulic groundwater theory could cover the esti-
mated nonlinearities of a large portion of our studied catchments. These catchments typically have a relatively 
small extent of deep slow-moving groundwater subsidy sourced from upland hillslopes. However, in catchments 
where the groundwater contribution from upland hillslopes to low-flow discharge becomes distinctly large, rela-
tive to the contribution from shallow riparian sedimentary deposit aquifer, hydraulic groundwater theory using 
one single representative storage unit (or [non]linear reservoir) might not be sufficient to explain the large esti-
mated nonlinearity values (β1 values larger than 0.5). Our findings on the mechanistic causes of the nonlinearity 
of low-flow storage–discharge relation could improve (a) our understanding of low-flow generation processes 
and catchment’s hydro-geochemical functions, (b) the estimation of low-flow transit time, and (c) the quality of 
model development and ultimately assessments of the impacts of global environmental changes on stream low 
flows.

Data Availability Statement
Gridded climatic data used in our study were obtained from the ERA5-Land database (Muñoz-Sabater 
et al., 2021). Catchment-scale data used in six methodological variants were published in H. Li and Ameli (2023).
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