6 T Southern University
U e c h of Science and
w Technology

PURDUE

UNIVERSITY

Chongqging Academy,
Chinese Academy of Sciences

B Introduction

® Global reservoirs emit CH, at 606.5 Tg CO, Eq. per
vear, accounting for 78.5% of total GHG emissions.
Ebullition is a major pathway of CH, release,
accounting for 78-88% of global reservoirs CH,
emissions.

® The global reservoir sediment sequestration has
surged to 65 Gt yrt in 2010 from 2.8 Gt yrt in
1950, burying 58 Tg C yr! of organic carbon and
fueling CH, production and emissions.

® Field observations and laboratory experiments
indicate that CH, production and ebullition
increases  disproportionately  to reservoirs
sedimentation rate.

® In this study, by introducing the intrinsic link
between sedimentation and CH, production, and
hence ebullition, a novel mechanistic reservoir CH4
model was developed to quantify ebullition from
reservoirs.

® Regulatory mechanisms of sedimentation on CH,
production and ebullition
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® CH, emissions
* CH, diffusion
Fp = kT(CW — kaéI{rz)MCHrc
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B Mathematical Model

® CH, dynamics in sediment
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* CH, bubble formation
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® CH, dynamics in water
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® Seasonal dynamics of CH, ebullition in the Saar
River reservoirs
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® CH, dynamics at different sedimentation rates
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* CH, ebullition increases exponentially with sedimentation rate.
* Sediment CH, production is the primary control for CH, bubble
formation.
* Under porewater CH, supersaturation, the majority of the
increased CH, production, resulting from an elevated
sedimentation rate, is released via ebullition.

B Model Application

® CH, emissions from the Three Gorges Reservoirs
(TGR)
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* SR: Sedimentation rate

® CH, emissions from the TGR in different
sedimentation scenarios
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B Environmental Implications

® The role of the TGR’s CH, ebullition and carbon
burial in the Yangtze River carbon cycling

* Since dam closure, the TGR trapped 108 Mt yr! sediments
and buried 1048 Gg C yr?, fueling CH, ebullition of 0.63 Gg

CH,-C yrt. The TGR’s ebullition could account for 23.3% of

CH, emissions from the Yangtze River (2.7 Gg CH,-C yr).

 The TGR could bury 1048 Gg C yr, which explains 64% of
the decreased carbon emissions (1636.7 Gg C yri, Ni et al.,
2022) from the downstream Yangtze River in term of
carbon budget.

* The sedimentation-regulated CH, ebullition from the TGR
could, to some extent, reflect the impacts of the reservoir
carbon burial on the Yangtze River carbon cycling.

® The role of reservoirs ebullition in global inland
waters carbon cycling perturbed by damming

® Carbon cycle in the land-to-ocean
aquatic continuum (LOAC)
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B Conclusions

* Excessive CH, production is required to induce porewater CH,
super-saturation and trigger bubble formation. Sedimentation
can regulate reservoir CH, ebullition by influencing CH,
production.

* By trapping most of the sediments from upstream, the TGR
experienced a surge in CH, emission from 0.17 to 1.38 Gg CH,-C

yrt after impoundment, mainly via ebullition (0.63 Gg CH,-C yr).
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