

Introduction

- Global reservoirs emit CH_4 at 606.5 Tg CO_2 Eq. per year, accounting for 78.5% of total GHG emissions. Ebullition is a major pathway of CH_{4} release, accounting for 78-88% of global reservoirs CH_{A} emissions.
- The global reservoir sediment sequestration has surged to 65 Gt yr⁻¹ in 2010 from 2.8 Gt yr⁻¹ in 1950, burying 58 Tg C yr⁻¹ of organic carbon and fueling CH₄ production and emissions.
- Field observations and laboratory experiments indicate that CH_{A} production and ebullition disproportionately to reservoirs increases sedimentation rate.
- In this study, by introducing the intrinsic link between sedimentation and CH₄ production, and hence ebullition, a novel mechanistic reservoir CH4 model was developed to quantify ebullition from reservoirs.

Mechanisms

Regulatory mechanisms of sedimentation on CH₄ production and ebullition Sedimentatio Rate **OC** exposure Deposition OC flux to time to O₂ time (*t*_s) sediment (OET) **OC-mineral** OC in the associations methanic zone Ð OC amount **OC** reactivity Rapid sedimentation would augment CH_4 production (P) sediment CH₄ production and CH₄ solubilitycontrolled trigger ebullition due to less oxygen exposure time CH₄ and deposition time Ebullition **(***E***)** and higher OC input.

Modelling of sedimentation-regulated methane ebullition from reservoirs

Enze Ma^a (maez@sustech.edu.cn), Xiuyu Liang^a, Qianlai Zhuang^b, Zhe Li^c, Lian Feng^a, Kewei Chen^a, Jiangwei Zhang^a and You-Kuan Zhang^a ^aSchool of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China ^bDepartment of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA ^CCAS Key Lab of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China

Mathematical Model

● CH₄ dynamics in sediment $\frac{\partial \phi c_s}{\partial t} = \frac{\partial}{\partial z} \left(D_s \frac{\partial c_s}{\partial z} \right) + \phi v_s \frac{\partial c_s}{\partial z} + P - E$ CH₄ production $P = R_c s_{oc} Q_{10}^{(T_s - T_r)/10}$ $-z_0 < z \leq 0$ $\left(\frac{v_s}{R_s}\right)^{\beta}$ $R_c =$ $\exp(-k\tau_s)$ $-Z_{S} \leq Z \leq Z_{O}$ $K_0\left(\frac{1}{v_0}\right)$ $\tau_{\rm s} = |z|/v_{\rm s}$ * v_s :sedimentation rate; τ_s :deposition time CH₄ bubble formation $E = \mathcal{H}(c_s - \alpha_e c_{\rm cr}) \cdot \phi \eta (c_s - \alpha_e c_{\rm cr})$ ● CH₄ dynamics in water $\frac{\partial c_w}{\partial t} = \frac{\partial}{\partial z} \left(D_e \frac{\partial c_w}{\partial z} \right)$ $-S_{o}$ $*S_o$:CH₄ oxidation ● CH₄ emissions CH₄ diffusion $F_D = k_T (c_w - k_H p_{\mathrm{CH}_4}^{\mathrm{atm}}) M_{\mathrm{CH}_4 - \mathrm{C}}$ CH₄ ebullition $E \, \mathrm{dz} \cdot M_{\mathrm{CH}_4-\mathrm{C}}$ $F_E = (1 - \xi)$ Results ● Seasonal dynamics of CH₄ ebullition in the Saar **River reservoirs** (a) ABT1 • Obs.(Wilkinson et al., 2015) — Model flux — Obs. Tw RMSE=483 CH ,-C $m^{-2}d^{-1}$

- Excessive CH₄ production is required to induce porewater CH₄ super-saturation and trigger bubble formation. Sedimentation can regulate reservoir CH_{A} ebullition by influencing CH_{A} production.
- By trapping most of the sediments from upstream, the TGR experienced a surge in CH₄ emission from 0.17 to 1.38 Gg CH₄-C yr⁻¹ after impoundment, mainly via ebullition (0.63 Gg CH₄-C yr⁻¹).

References

Deemer et al., Bioscience 66(11), 949-964 (2016). Maeck et al., Environmental Science & Technology 47, 8130-8137 (2013). Mendonça et al., Nature Communications 8, 1694 (2017). Ni et al., National Science Review 0, nwac013 (2022). Regnier et al., *Nature* **603**, 401-410 (2022). Sobek et al., Geophysical Research Letters 39, L01401 (2012). Soued et al., Nature Geoscience 15, 700-705 (2022). Syvitski et al., Nature Reviews Earth & Environment 3, 179-196 (2022) Wilkinson et al., Environmental Science & Technology 49(22), 13121-13129 (2015)