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ABSTRACT
Satellite remote sensing, characterized by extensive coverage, fre-
quent revisits, and continuous monitoring, provides essential data 
support for addressing global challenges. Over the past six decades, 
thousands of Earth observation satellites and sensors have been 
deployed worldwide. These valuable Earth observation assets are 
contributed independently by various nations and organizations 
employing diverse methodologies. This poses a significant challenge 
in effectively discovering global Earth observation resources and 
realizing their full potential. In this paper, we describe the develop-
ment of GEOSatDB, the most complete semantic database of civil 
Earth observation satellites developed based on a unified ontology 
model. A similarity matching method is used to integrate satellite 
information and a prompt strategy is used to extract unstructured 
sensor information. The resulting semantic database contains 
127,949 semantic statements for 2,340 remote sensing satellites 
and 1,021 observation sensors. The global Earth observation capabil-
ities of 195 countries worldwide have been analyzed in detail, and 
a concrete use case along with an associated query demonstration is 
presented. This database provides significant value in effectively 
facilitating the semantic understanding and sharing of Earth observa-
tion resources.
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1. Introduction

The widespread availability of coordinated and publicly accessible Earth observation (EO) 
data empowers decision-makers worldwide to comprehend global challenges and 
develop more effective policies (Annoni et al., 2023; Guo et al., 2022; Sudmanns et al.,  
2023). Space-based satellite remote sensing, which serves as the primary tool for EO, 
provides essential information about the Earth and its environment by measuring various 
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geophysical variables (Wulder et al., 2022; Zhao et al., 2021). This contributes significantly 
to our understanding of the fundamental Earth system and the impact of human 
activities.

Over the past few decades, many countries and organizations have markedly improved 
their regional and global EO capabilities by deploying a variety of advanced remote sensing 
satellites. The rapid growth of EO satellites and advances in on-board sensors have signifi-
cantly enhanced remote sensing data quality by expanding spectral bands and increasing 
spatio-temporal resolutions (Bai & Jin, 2021). However, users face challenges in accessing 
available EO resources, which are often maintained independently by various nations, orga-
nizations, or companies (Boldrini et al., 2023; Roncella et al., 2023). As a result, a substantial 
portion of archived EO satellite resources remains underutilized (Ballari et al., 2023). Enhancing 
the discoverability of EO satellites and sensors can effectively utilize the vast amount of EO 
resources that continue to accumulate at a rapid pace, thereby better supporting data for 
global change research (Jin et al., 2022; Mazzetti et al., 2022). For example, thermal infrared 
(TIR) remote sensing, which detects thermal radiation emitted from the Earth’s surface, plays 
a crucial role in monitoring land surface temperature (LST). The most widely used global EO 
data for this purpose include Landsat satellites (Chen et al., 2022; Gemitzi et al., 2021) and 
Moderate Resolution Imaging Spectroradiometer (MODIS) (Wang et al., 2022; Zhan & Liang,  
2023). To determine which other EO satellites can provide similar TIR observing capabilities 
with comparable spatial resolution, a dedicated satellite and sensor database is highly 
anticipated. Such a database could maintain semantic descriptions of observing character-
istics and capabilities for all satellites and sensors. It could also provide search capabilities to 
offer more comprehensive knowledge services.

In this paper, we present GEOSatDB, a semantic database of Earth observation satellites 
that contains a total of 127,949 semantic statements for 2,340 satellites, 1,021 sensors, and 
2,331 wavebands. We have constructed a unified ontology model to formalize the 
semantic information of the satellites, sensors, and wavebands within this database. 
Given the significant variability of information across different satellite information data-
bases, we present a fusion method for aggregating EO satellite information from them. 
A large language model was utilized with a specially designed prompt strategy to fulfill 
the information extraction from semi-structured web pages. A voting method with 
support from prior knowledge was used to derive the final information. To demonstrate 
the value of this database, a specific use case is presented, along with an analysis of Earth 
observation capabilities across 195 countries.

The remainder of this paper is structured as follows. Section 2 provides an overview of 
existing EO satellite and sensor databases. Section 3 details a unified ontology model, the 
methodology for integrating EO satellite information, and the approach for extracting and 
fusing EO sensor information. Section 4 analyzes the results of the semantic database and the 
current status of EO capabilities in 195 countries. Section 5 presents a specific query example 
and discusses the limitations of this study. Section 6 offers a conclusion for the paper.

2. Related work

As summarized in Table 1, there are several important information resources for EO 
satellites and sensors. The World Meteorological Organization (WMO) has developed 
the Observing Systems Capability Analysis and Review Tool (OSCAR) to assess EO 
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requirements, particularly within WMO application areas such as meteorology, hydrology, 
and climate studies (Balogh & Kurino, 2020; WMO, 2023). The Committee on Earth 
Observation Satellites (CEOS) maintains the Missions and Instruments Database to facil-
itate the exchange of information on civil EO satellites and instruments among CEOS 
member agencies (CEOS, 2023). Its primary goal is to improve the use of civil EO 
capabilities and to coordinate upcoming EO missions. The National Aeronautics and 
Space Administration (NASA) has established the Global Change Master Directory 
(GCMD) to help researchers, policymakers, and the general public locate and access 
data and services relevant to global change research (Parsons et al., 2022). The 
University of Twente’s Faculty of Geo-Information Science and Earth Observation (ITC) 
has designed a satellite and sensor database, providing swift access to pertinent informa-
tion about EO satellites and sensors (ITC, 2023). The European Space Agency (ESA) 
eoPortal serves as a reliable and precise gateway for accessing comprehensive informa-
tion about EO satellite missions presented in web articles (ESA, 2023).

In addition to these specialized EO satellite resources, there are a number of valuable 
general satellite databases. The Union of Concerned Scientists (UCS) Satellite Database 
periodically publishes primary information about currently operational satellites in Excel 
format (UCS, 2023). CelesTrak Satellite Catalog (SATCAT) (Kelso, 2023), Outer Space 
Objects Index (OSOidx) (UNOOSA, 2023), and the General Catalog of Artificial Space 
Objects (GCAT) (McDowell, 2023) are three databases that focus on the safety of the 
Earth’s orbital environment and include active payloads, rocket stages, and debris. As 
such, these databases encompass all successfully launched satellite resources, along with 
metadata primarily related to orbital parameters. In addition, the Nanosats Database 
collects detailed information on nanosatellites (Kulu, 2023).

These existing EO satellite and sensor databases have been built for different purposes 
and therefore exhibit significant variations in content and quantity. In addition, the 
richness of their metadata and the organization of information show considerable diver-
sity. CelesTrak SATCAT, GCAT, and UNOOSA OSOidx represent general-purpose satellite 
databases. These databases encompass not only EO satellites but also those designed for 
other purposes, such as communication and navigation. They maintain information on 
satellite orbital parameters. However, there is no classification of satellite types in these 

Table 1. Earth observation satellite and sensor databases.

Resource

Count*

Types Services LicenseSatellite Sensor

WMO OSCAR 696 786 EO A, F, W OA
CEOS MIM Database 457 559 EO F, W OA
NASA GCMD 518 768 EO A, F, W OA
ITC Database 345 403 EO W OA
ESA eoPortal 657 - EO W NC
UCS Satellite Database 6,718 - All F, W OA
CelesTrak SATCAT 16,404 - None F, W OA
GCAT 17,121 - None F OA
UNOOSA OSOidx 16,568 - None W OA
Nanosats Database 3,752 - All W OA

Key: *= Only successfully launched satellites and on-board sensors are counted. 
- = No sensor information available. 
Services: A = API; F = File export; W=Web page. 
License: OA = open access with acknowledgement; NC = non-commercial use.
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databases. The UCS satellite database is limited to satellites that are currently in orbit. The 
Nanosats database specializes exclusively in nanosatellites. Regarding EO databases, the 
ESA eoPortal primarily organizes resources in the form of unstructured webpages. NASA 
GCMD maintains only the names of the satellites as keywords, without additional infor-
mation. The CEOS MIM database exclusively encompasses the satellites and sensors of its 
member agencies, featuring wavelength, spatial resolution, and swath width information 
primarily in the form of unstructured text. The ITC database initially includes models for 
wavelength, resolution, swath width, and revisit time, but the depiction of microwave 
information is still inadequate, and the total number of sensors is only 412. The WMO 
OSCAR database contains nearly 1,000 EO satellites and sensors, representing the most 
comprehensive database available. However, a majority of the information is maintained 
in semi-structured tables, which poses challenges for effective information retrieval and 
mining.

The purpose of this study is to propose a unified ontology model and develop 
a comprehensive methodology capable of in-depth analysis and integration of these 
databases and information sources to provide a more complete semantic representation 
of satellites, sensors and wavebands. The goal of this study is to provide comprehensive, 
structured semantic information about Earth observation satellites and sensors, and to 
facilitate advanced information retrieval and knowledge services for discoverability and 
reusability of EO resources.

3. Methodology

This section first presents the design of the ontology, including essential classes and 
relationships, and then provides a detailed description of the knowledge base creation 
process for EO satellites and their associated sensors. All information was obtained from 
open access sources listed in Table 1.

3.1. Ontology design

The ontology model establishes an understandable and common vocabulary to improve 
sharing and interoperability across diverse systems, thereby significantly increasing the 
reusability of domain knowledge. The primary goal of GEOSatDB is to provide 
a comprehensive database of Earth observation satellites by integrating different data 
sources. The GEOSatDB ontology has been developed based on the following principles:

● Incorporating valuable information from multiple data sources.
● Capturing essential observation parameters.
● Providing provenance information for GEOSatDB entities.

The construction of the ontology employs the RDF technology stack (Gandon et al., 2014; 
Prud’hommeaux et al., 2014) developed and maintained by the World Wide Web 
Consortium (W3C). The RDF data model is characterized by a variety of syntax notations 
and primarily consists of nodes and edges. Non-literal nodes are uniquely identified by 
Uniform Resource Identifiers (URIs), thereby enhancing resource association and integra-
tion. The methodology employed in building the GEOSatDB ontology integrates both 
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top-down and bottom-up approaches. Initially, the ontology is aligned with key interna-
tional standards for Earth observation satellites and sensors, particularly those established 
by the International Organization for Standardization (ISO) Technical Committee 211 (ISO/ 
TC211), a committee focused on geographic information. Adaptation and extension of the 
core concepts and metadata from the ISO 19115 (ISO, 2014b, 2019) and 19130 (ISO, 2014a,  
2018, 2022) series were undertaken to ensure semantic interoperability. Subsequently, 
analysis and generalization of the data structures of existing resources were conducted, 
and application-specific properties were introduced within the proposed namespace. 
Enumerable properties are represented as classes to facilitate association and extension. 
To further advance semantic interoperability, generic metadata standards have been 
adopted. These include utilizing OWL (Hitzler et al., 2012) and RDFS (Brickley & Guha,  
2014) for delineating relationships between classes and properties, employing SKOS 
(Miles & Bechhofer, 2009) for terminology definitions, applying XML Schema (Biron & 
Malhotra, 2004) for data type specification, and incorporating the publicly accessible 
vocabulary from Schema.org (Guha et al., 2016).

The resulting ontology is illustrated in Figure 1. There are four fundamental classes: 
Satellite, Sensor, Operational Band, and Operation. A remote sensing sensor, mounted on 
a satellite, collects data representing the state of the Earth’s surface and atmosphere. An 
operational band represents the range of electromagnetic frequencies across which 
a sensor conducts observations. The modeling of the satellite class encompasses three 
principal facets: basic information, orbital information, and auxiliary information. Basic 
information refers to descriptive properties of a satellite, including its name, international 
designator, launch date, and end of life (EOL) date. Orbital information is critical in 
assessing a satellite’s capability to perform an EO mission by specifying its orbital para-
meters. Auxiliary information provides references for various purposes, including 

Figure 1. Ontology model of GEOSatDB. If no datatype is specified, properties default to xsd:string. 
Object properties are omitted when they start with a lowercase letter and match the class name. For 
example, in the tuple <OperationalBand, operation, Operation>, the term “operation” is excluded.
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descriptions and data access. The sensor class is characterized by an emphasis on the 
observation technique and the attainment of optimal performance characteristics (e.g. 
highest resolution, maximum swath). The operational band class delineates the spectrum 
of bands available for a sensor. The operational mode and observing performance 
associated with an operational band are further delineated within the operation class.

3.2. Integrating EO satellite information

The first step is to select the objects classified as “payload” from the CSV file provided by 
the CelesTrak Satellite Catalog, which serves as the primary satellite database. This catalog 
primarily contains the satellite name, a unique international designator (also known as the 
COSPAR ID), and orbital parameter information. The CSV files from GCAT and UCS, along 
with information retrieved from the OSOidx and Nanosats databases, linked through the 
international designator, are utilized to populate the missing fields in our satellite data-
base, encompassing satellite alternate name, orbit type, dry mass, end of life date, and 
applications.

Although the OSCAR satellite database is a valuable resource for environmental 
satellite missions, it lacks the international designator required for direct mapping to 
our database. To overcome this limitation, we use a matching method that combines 
launch time and text similarity to establish the association, as shown in Figure 2. The 
OSCAR satellite database provides access to data from both the Excel file and the 
application programming interface (API) endpoint, but the information is not completely 
overlapping. We use the API endpoint data as the primary source and supplement it with 
the additional data provided in the Excel file. Satellite launch times in the OSCAR database 
are frequently provided independently by various organizations, resulting in the use of 
local time zones. To illustrate, consider the case of Feng-Yun 1A. OSCAR records its launch 
time as September 7, while GEOSatDB uses a UTC-based launch time of September 6. This 
discrepancy is due to the fact that Feng-Yun 1A was launched at 4 a.m. on September 7 in 
the UTC + 8 time zone. To account for such differences, we set a one-day launch time 
threshold.

We then use two similarity matching methods, Jaro-Winkler similarity (Cohen et al.,  
2003) and Ratcliff-Obershelp similarity (Kalbaliyev & Rustamov, 2021), to align OSCAR to 
our database using the satellite names and aliases. The Jaro-Winkler similarity measures 
the edit distance between two strings, with special emphasis on improving the similarity 
for strings with identical prefixes compared to the standard Jaro similarity. The formula for 
the Jaro similarity is 

simj ¼
0; if m ¼ 0
1
3

m
s1j j
þ m

s2j j
þ m� t

m

� �
; if m! ¼ 0

(

(1) 

Where m is the number of character matches; t is half the number of characters that match 
but are out of order; s1j j and s2j j are the lengths of the two strings being compared. Thus, 
the Jaro-Winkler similarity is 

simw ¼ simj þ 0:1� len� 1 � simj
� �

(2) 
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Where len is the number of characters that start the same in both strings (up to 4). The 
threshold for the Jaro-Winkler similarity is set to 0.6. If there are no matching satellites, the 
Ratcliff-Obershelp similarity is used to measure the sequence similarity between the two 
strings. 

simro ¼
2� km

s1j j þ s2j j
(3) 

Where km represents the count of matching characters. A threshold of 0.6 is 
applied to the Ratcliff-Obershelp similarity. Comparable matching strategies are 
utilized for the CEOS, ITC, GCMD, and eoPortal satellite databases, all of which 
lack the international designator. These databases serve primarily to supplement 
EO-related information, such as repeat cycle, equatorial crossing time, and onboard 
observation sensors.

Figure 2. Integration of Earth observation satellite information from multiple databases.
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3.3. Extraction and fusion of EO sensor information

Unfortunately, there is a lack of databases that allow advanced retrieval of sensor 
information. For example, the OSCAR sensor database provides simple filtering options 
based only on sensor type and spectral domain. This limitation is due to the fact that 
much of the valuable information is presented in an unstructured text format. 
Recently, there has been a growing interest in unsupervised information extraction 
using large language models (LLMs). For example, GPT-3 has demonstrated potential 
as an effective extractor of clinical information through zero and few-shot prompts 
(Agrawal et al., 2022). Employing few-shot prompting with GPT-3 achieves perfor-
mance nearing the state-of-the-art (SOTA) in relation extraction tasks (Wadhwa et al.,  
2023). ChatIE (Wei et al., 2023), a two-step framework relying on LLMs, achieves 
remarkable performance on zero-shot information extraction tasks. In this context, 
we propose the utilization of a structured prompt strategy to guide large language 
models in extracting information including resolution, revisit time, swath width, spec-
tral range, polarization, incidence angle. We use the GPT-4 language model for this 
purpose, details of which are shown in Figure 3. Initially, we retrieve the unprocessed 
content of each sensor in OSCAR using WMO APIs and web crawlers. We then perform 
the following preprocessing steps:

● Numerical information, such as signals and wave numbers, is filtered based on 
predefined rules. Complex unit representations pose a challenge to the language 
model, resulting in potential extraction inaccuracies that can affect the accuracy of 
other numerical entities.

● Raw content is consolidated into key-value pairs for use as model input. Unnecessary 
line breaks and indentation are removed. This reduction significantly shortens the 
model input, allowing for more input text and cost savings.

Figure 3. Extracting EO sensor information from web pages using large language models and regular 
expressions.
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The prompt string consists of two components: a system message and a function call. 
The system message provides instructions for guiding the model according to the 
following principles:

● Explicitly state that this task pertains to information extraction.
● Exercise caution by not extracting uncertain data and marking it as null.
● Pay special attention to unit differences and conversions.

The function call is used to define the JSON object for output from the model, following 
the JSON schema and specifying the type and description of each entity, including the 
unit for numeric types.

In scenarios involving resources such as the CEOS sensor database, the data, although 
in unstructured text form, adheres to a more consistent and specific format. The Excel files 
were obtained from the CEOS sensor database and the web pages for each sensor were 
downloaded, each containing a significant amount of valuable unstructured information. 
Information was extracted using regular expression templates that primarily included 
numeric fields such as spatial resolution and swath width. The resulting content from 
various sources was then merged through a voting process to produce a singular out-
come. Initially, all extracted results were aggregated and the entry with the highest 
number of votes was selected as the output. In the absence of a clear majority, results 
derived from regular extraction methods were prioritized. Prior knowledge, including 
wavelength ranges corresponding to waveband categories, was employed for refinement. 
Finally, the automatically extracted information is progressively corrected and supple-
mented by domain experts and users to achieve optimal results.

4. Results

4.1. Overview of GEOSatDB

GEOSatDB employs a unified ontology model consisting of 4 core classes, 9 enumeration 
classes and 61 associated properties. In total, it contains 127,949 semantic statements. In 
particular, it completes the description of 2,340 satellites, 1,021 sensors and 2,331 wave-
bands. Figure 4 illustrates the comparison between GEOSatDB and four prominent exist-
ing EO satellite databases. Evidently, GEOSatDB exhibits a distinct advantage in both the 
quantity of EO satellites and the richness of information. Both the OSCAR and CEOS 
databases fail to match GEOSatDB in about 6% of the satellite count, considering 
a combination of launch time and text similarity. An analysis of these shortcomings 
shows that they are mainly due to OSCAR and CEOS misclassifying failed launches as 
inactive or inaccurately recording the launch time. The GCMD and ITC databases have 
a lower correlation with GEOSatDB, mainly because the launch times they provide are 
only precise at the year level.

4.2. EO capability analysis

The trend in the number of EO satellites launched over the years is depicted in Figure 5(a). 
Over the past two decades, a significant increase in the number of EO satellites has been 
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observed, driven by continuous technological advances. Especially since 2014, numerous 
low-cost small satellite constellations have emerged, as exemplified by the Planet’s Dove 
satellites. Additionally, Figure 5(b) demonstrates the evolution of the spatial resolution of 
civil radar sensors. The early low-resolution SeaSat and Nimbus series of satellites were 
primarily deployed to verify the feasibility of meteorological and oceanographic 

Figure 4. Comparative analysis of our EO satellite database and existing resources.

Figure 5. (a) Number of EO satellites launched annually. (b) Number of radar sensors of different 
resolutions launched annually. (c) Number of EO satellites operated by different countries or organiza-
tions. Data from international organizations such as ESA are listed only under themselves and are not 
duplicated in each member country.
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observations from space. Subsequently, satellites such as the European Remote Sensing 
Satellite (ERS), equipped with a comprehensive suite of radar sensors, have provided 
continuous and stable observations. Over the past decade, significant advances in radar 
technology have enabled improved image resolution and diversified modes of operation. 
The C-band synthetic aperture radar (SAR) onboard Sentinel-1A, which was launched in 
2014, has facilitated high-resolution measurements in certain modes. In recent years, 
commercial satellites such as COSMO-SkyMed Second Generation (CSG) and Capella 
Space have transitioned to sub-meter SAR observations. Looking forward, the focus on 
higher resolution will also underscore the harmonized development of data quality.

Figure 5(c) shows the number of EO satellites operated by different countries and 
organizations. It is evident that many countries in the southern hemisphere tend to have 
limited satellite Earth observation capabilities. Furthermore, only a few African countries 
possess the capacity to launch and sustain their own EO satellites. This implies that these 
nations are predominantly dependent on global EO satellites operated by other countries 
for observing their national space. This study recommends that spacefaring nations 
should strengthen their collaboration with the Group on Earth Observations (GEO), 
a leading intergovernmental organization dedicated to Earth observation. GEO envisions 
a future in which decisions and actions for the benefit of humanity are informed by well- 
coordinated, in-depth, and continuous Earth observation. In their engagement with GEO, 
spacefaring nations ought to adopt a more open and inclusive approach in sharing their 
global satellite observation data and products. Furthermore, it is advised that they 
provide technical support for the development and maintenance of EO satellites to 
developing countries, particularly focusing on African nations, guided by the principles 
of cooperation and mutual benefit.

We conducted a detailed analysis of the three countries with the highest number of EO 
satellites – the United States, China, and Russia – along with ESA, a prominent interna-
tional organization in space exploration, as depicted in Figure 6. The United States holds 
a significant lead with a total of 1,037 EO satellites, characterized by a balanced ratio of 
retired to in-orbit satellites and an equitable distribution across various spectral bands. 
This capability enables the United States to maintain continuous observation of specific 
targets over extended periods. In contrast, China’s EO satellites consist primarily of newly 
launched operational satellites in recent years, suggesting significant growth potential in 
the coordinated development of small EO satellites. Russia has launched fewer new EO 
satellites, and the majority of these have been decommissioned and no longer participate 
in observation activities. ESA has consistently launched and maintained high quality 
satellites throughout its 50-year history, providing stable and enduring global services.

4.3. An information retrieval and mining use case

To demonstrate the information mining potential of GEOSatDB, we employed the 
LST monitoring scenario outlined in the introduction as a concrete example. 
Figure 7 illustrates satellite resources that provide enhanced thermal infrared 
resolution compared to the broadly utilized Thermal Infrared Sensor (TIRS) on 
board Landsat-8 and Landsat-9. On the China-Brazil Earth Resources Satellite-4 
(CBERS-4), the TIR sensor possesses a single TIR band with 80 m spatial resolution. 
The TIR camera on the HJ-2A/B satellite features nearly the same band 
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segmentation and spatial resolution as the Landsat TIRS, coupled with a larger 
swath width and faster revisit time. The SDGSAT-1 satellite is equipped with a TIR 
sensor featuring a novel 3-band design that combines a large swath width of 300  
km with a high spatial resolution of 30 m. The TIR band of the ZY-1-02E satellite 
operates within a special wide channel of 8–10 μm, establishing it as a leader in 
the field with a high spatial resolution of 16 m. In addition, the recent deployment 
of the HOTSAT-1 commercial satellite has provided a highly competitive TIR resolu-
tion of 3.5 m. However, an anomaly that occurred in December 2023 resulted in 
the cessation of data production.

5. Further discussions

5.1. Query example

GEOSatDB is published and distributed in Turtle format and supports the SPARQL query 
language. As a W3C standard, SPARQL ensures consistency and interoperability in query-
ing RDF graphs. This standardization is crucial for developers and organizations engaged 
in working with web data. Figure 8 demonstrates the SPARQL query statement for the 
specific case depicted in Figure 7, comprising a main query and a subquery. The subquery 
is initially utilized to obtain the thermal infrared spatial resolution of Landsat-9 TIRS. 
Subsequently, the main query, based on a filter expression, aims to identify all sensors 
with a thermal infrared spatial resolution higher than that of Landsat-9 TIRS. In addition, 
GEOSatDB has been integrated into our Earth Observation Knowledge Hub, enhancing 
service accessibility for users unfamiliar with SPARQL, as illustrated on the right side of 
Figure 8.

Figure 6. Analysis of the EO capabilities of the United States, China, Russia, and ESA. Line charts show 
the number of EO satellites launched over the years. Bar charts illustrate the operational status and 
mass of satellites in various orbit types. Pie charts demonstrate the distribution of wavebands among 
the sensors aboard these satellites.
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Figure 7. Satellite remote sensing resources that provide better spatial resolution than Landsat-8 in 
the thermal infrared spectrum.

Figure 8. SPARQL query and online search to identify satellites and sensors with higher spatial 
resolution than Landsat-9 in the thermal infrared band.
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5.2. Limitations

The GEOSatDB database is currently limited in the inclusion of EO sensors and lacks 
satellite constellation information. The construction of the ontology integrates a top- 
down approach, adhering to international standards, and a bottom-up approach, 
informed by empirical data sources. As a result, certain properties currently have no or 
minimal values, notably repeat cycle, data access, data format, and radiometric resolution. 
Nevertheless, these properties are critical for characterizing EO capabilities and data use, 
so they are included in the ontology to enable future extensions. In future iterations, we 
plan to augment the database by automatically extracting sensor and constellation 
details from official satellite websites. Furthermore, building on this initial release, there 
is potential to fill data gaps through collaborations with GEO and satellite operators. 
Regarding unsupervised information extraction, the generalized GPT model has shown 
impressive precision but suffers from a lack of recall. The development of a domain- 
specific model may prove to be an effective way to improve extraction performance.

6. Conclusions

This paper presents GEOSatDB, a specialized semantic database that provides extensive 
and semantically enriched information on both active and retired EO satellites and their 
onboard sensors. Its primary goal is to improve the discoverability of EO resources, 
thereby assisting researchers in accessing newly available EO data and satellite operators 
in assessing current EO capabilities for more effective coordination of future EO missions. 
In summary, the main contributions of this paper are as follows:

● GEOSatDB serves as the most extensive knowledge base for Earth observation 
satellites and sensors, covering 4 core classes, 9 enumeration classes, 61 properties, 
2,340 satellites, 1,021 sensors, and a total of 127,949 semantic statements. It has been 
developed by integrating data from diverse sources and employs semantic 
representation.

● We propose a matching method that combines launch time and text similarity to 
address the challenge of linking and integrating diverse satellite databases. 
Additionally, we propose the use of a structured prompt strategy to guide LLMs in 
extracting sensor information from unstructured text.

● Our research reveals a significant North-South divide in satellite Earth observation 
capabilities, with the majority of African nations unable to launch or maintain their 
EO satellites. We advocate for spacefaring nations to strengthen their collaboration 
with GEO, both to expand and share global EO resources and to support developing 
countries in building their own EO satellites through technical assistance.

Our future research goals include the following: (1) Develop a specialized, large EO- 
specific language model to enhance the extraction of EO entities and relationships. (2) 
Augment GEOSatDB by retrieving information from EO satellite and sensor detail pages, 
including platforms such as eoPortal and official websites. (3) Create a comprehensive and 
interconnected EO knowledge graph, encompassing Earth science variables, EO satellites, 
scientific datasets, scholarly literature, and other pertinent components.
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