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Abstract: As one of the most earthquake-prone regions in the world, China faces extremely serious
earthquake threats, especially for those heavily populated urban areas located near large fault zones.
To improve the ability to prevent and minimize earthquake disaster risks, and to reduce earthquake
disaster losses, China is currently building a nationwide earthquake early warning system (EEWS)
with the largest seismic network in the world. In this paper, we present the newest progress of this
project through describing the overall architecture of the national EEWS and evaluating the system
performance during the 2022 Lushan M6.1 earthquake. The accuracy of the source characterization for
the Lushan earthquake is discussed by comparing the continually estimated location and magnitude
with the catalogs obtained from the China Earthquake Networks Center. For this earthquake, the
EEWS generated a total of five alerts, and an initial alert was created 5.7 s after its occurrence, with
excellent epicentral location and origin time estimation. The final alert was issued 16.5 s after origin
time with a magnitude estimate of M6.1, the same as the catalog value. However, from the point view
of alerting performance, the radius of the real blind zone without warning time was about 30 km and
much larger than the theoretical result, mainly caused by the releasing system not considering the
epicenter distance of each terminal when issuing the alerts. Although the earthquake exposed some
limitations that need to be addressed in future upgrades, the results showed that most aspects of the
EEWS presented a robust performance, with continuous, reliable event detections and early-warning
information releasing.

Keywords: earthquake early warning; hybrid seismic network; MEMS-based sensor; Lushan M6.1
earthquake; seismic risk mitigation

1. Introduction

With the rapid development of modern manufacturing industries and communications,
China has been experiencing a dramatic change in the urban landscape. The degree of
urbanization of China rose from 36% in 2000 to around 65% in 2021. Currently, there are
17 cities with populations of more than 10,000,000 and more than 90 cities with populations
of more than 1,000,000. However, as one of the most earthquake-prone regions in the world,
China faces extremely serious earthquake threats. More than 50% of the cities and 70% of the
large and medium-sized cities with a population of more than 1,000,000 are located in areas
with high earthquake intensity of degree 7 or above. On average, 24 earthquakes of M5.0+,
4 earthquakes of M6.0+, and 0.6 earthquake of M7.0+ occur in mainland China every year.
In the total 34 provinces, 19 have experienced M7.0+ earthquakes and 12 have experienced
earthquakes of M8.0+. Heavily populated cities have been most severely affected by these
earthquakes, such as the 1976 M7.8 Tangshan earthquake with about 240,000 people being
killed and 164,000 being injured severely, and the 2008 M8.0 Wenchuan earthquake causing
almost 90,000 deaths and more than 450,000 injured. Therefore, an extremely urgent demand
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for China’s sustainable development is to comprehensively improve the ability to prevent and
minimize earthquake disaster risks and reduce earthquake disaster losses.

Among the means of mitigating seismic disaster risks, earthquake early warning
(EEW) systems (EEWSs) are increasingly considered an effective and important way to
provide alerts to the target areas instantly after devastating seismic events occur. With the
short leading time, generally from a few seconds to tens of seconds, people and automated
systems can take proper actions to prevent the potential damage, like “drop, cover and
hold on”, evacuating hazardous buildings or moving to safer locations within a build-
ing, stopping elevators at the nearest floor, shutting down gas pipelines, and slowing
high-speed trains [1]. Currently, many seismic-prone countries and regions are testing or
operating EEWSs, such as Mexico [2,3], Japan [4,5], the West Coast of the United States
of America [6], China [7–11], Taiwan [12–14], Europe [15–17], Switzerland [18], North-
ern India [19], Southern Iberia [20], Costa Rica [21], Israel [22,23], Southwestern British
Columbia [24], Iran [25,26], and Spain [27]. Great potentials of EEWSs have been reflected
in many large earthquakes, like the 2011 Mw 9.0 Tohoku earthquake [28], the 2012 Mw 7.4
Oaxaca earthquake [29], the 2016 Mw 7.0 Kumamoto earthquake [30], and the 2020 Mw 7.4
Oaxaca earthquake [31].

In China, the idea for building a nationwide EEWS was put forward after the 2008 M8.0
Wenchuan earthquake. With several years of EEW feasibility studies and multiple demonstra-
tion systems verification, this project, namely the National System for Fast Seismic Intensity
Report and Earthquake Early Warning project, was finally launched and implemented in
August 2015 and June 2018, respectively. The total investment of the project is 1.95 billion
RMB, with a five-year implementation cycle (from June 2018 to June 2023). Five regions
were selected as the key EEW zones, including the Beijing capital region (BCR), central China
north–south seismic belt, southeastern coastal areas, middle section of Tianshan Mountains
of Xinjiang, and Lhasa of Tibet. The first four were chosen as key zones when launching the
project, while the last was added in 2020. The total area of the five zones covers more than
two million km2, with an average interstation spacing of about 12 km.

During the building process, several areas, including the Beijing–Tianjin–Hebei region,
Sichuan province, and Yunnan province, have been chosen as the pilot regions for validating
the effectiveness of the system in advance. For these areas, all construction tasks were
required to be completed by June 2021, and then the system officially entered in the trial
operation stage by providing the early-warning information service to the public. In the
first year of the trial operation, the system has successfully provided early-warning services
for several moderate-to-strong earthquakes, such as the September 2021 Luxian M6.0,
the December 2021 Laos M6.0, and the January 2022 Menyuan M6.9 earthquakes. For
ensuring more stable and accurate results, the software system is always being improved
and optimized and new techniques are being explored.

In this paper, we will focus on the newest progress of this nationwide EEWS. Firstly, we
will describe the overall architecture of this system, including its seismic network composition,
software system structure, and newest criteria for generating early-warning information.
Next, we discuss the accuracy of the source characterization for the June 2022 Lushan M6.1
earthquake by comparing the estimated location and magnitude with catalogs obtained from
the China Earthquake Networks Center (CENC). Next, we examine the alerting performance
from theoretical and real aspects based on the current configurations. Finally, limitations of
the current system are explored and analyzed for further improvement.

2. The Chinese National EEWS
2.1. Seismic Network

For reducing the total investment of this project, low-cost MEMS (micro-electro-
mechanical system) triaxial accelerometers have been introduced for building a cost-
effective seismic network [32,33]. By the end of 2022, more than 15,000 stations belong-
ing to this project will be deployed across mainland China (Figure 1), containing about
2000 seismic stations (also called “datum station”), about 3200 strong-motion stations (also
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called “basic station”), and more than 10,000 MEMS-based stations (also called “ordinary
station”). Here, a datum station is equipped with a six-channel data acquisition system,
a three-component broadband seismometer collocated with a three-axis force-balanced
accelerometer, while a basic station is deployed only with a three-channel data acquisi-
tion system and a three-axis force-balanced accelerometer. As for an ordinary station, it
is equipped with a low-cost MEMS intensity sensor with an integrated data acquisition
system. The main characteristics of the sensors and data acquisition systems are listed in
Table 1. In addition, more than 5000 similar stations deployed by other station construction
projects under the responsibility of provincial seismological bureaus will also be included
into this project. It means that the total number of stations processed by the nationwide
EEWS will be more than 20,000, constituting the largest seismic network in the world.
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the National System for Fast Seismic Intensity Report and Earthquake Early Warning project. Datum
stations are equipped with collocated broadband seismometers and force-balanced accelerometers, basic
stations are equipped with only force-balanced accelerometers, and ordinary stations are equipped with
low-cost MEMS intensity sensors. The five key EEW zones are surrounded by red lines. They are K1:
the Beijing capital region (BCR), K2: central China north-south seismic belt, K3: southeastern coastal
areas, K4: middle section of Tianshan Mountains of Xinjiang, and K5: Lhasa of Tibet.
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Table 1. Main characteristics of the sensors and data acquisition systems used in the Chinese national
EEWS project.

Device Main Characteristic Specification

Broad-band seismometer

Technology Force feedback (force–balance) velocity sensor
Configuration Triaxial orthogonal (ZNE)
Velocity output band (flat response within −3 dB
crossing points) 60 s to 50 Hz

Output sensitivity 2000 V/ms−1 differential output
Peak full-scale output voltage Differential: ±20 V, Single-ended: ±10 V
Self noise below NLNM (New Low Noise Model;
Peterson, 1993, USGS) 60 s~5 Hz

Dynamic range >140 dB
Lowest spurious resonance >100 Hz
Power supply voltage 9~18 V DC
Power consumption (at 12 V DC) <2 W

Force-balanced accelerometer

Configuration Triaxial orthogonal

Peak full-scale output ±2.5/±5/±10 V, Single-ended or differential
(optional)

Gain ≥±2 g
Dynamic range ≥120 dB
Acceleration output band DC~80 Hz
Linearity Better than 1%
Noise RMS (Root Mean Square) ≤10−6 g

Data acquisition system

Channels Three or six at 24 bits
Input impedance ≥100 kΩ (Single-ended)
Dynamic range ≥135 dB at 50 samples per second

Digital filter FIR digital filter, selectable linear phase shift and
minimum phase shift filter

Out-of-band rejection >135 dB

Output sampling rates

1, 10, 20, 50, 100, 200 samples per second,
user-selectable, and multiple independent data
streams at different sampling rates for all channels
(transmission and recording)

Timing source precision
Accuracy when GNSS locked ±100 ns. Typical
drift when unsynchronized (without GNSS) <1 ms
per day

Timing sources GNSS (BeiDou, GPS, and GLONASS)

Calibration signal generator Step, Sine, or Binary codes (optional) with
adjustable amplitude

Real-time data delay <0.5 s

Data recording formats miniSEED or other formats with miniSEED
conversion software

Data streaming protocols Supporting the low-latency data-transmission
protocol

Power supply 9–18 V DC
Power consumption <7 W (3 channels), <8 W (6 channels)

Low-cost MEMS intensity sensor

Measurement range

−19.6 m/s2~19.6 m/s2 (east–west and
north–south)
−19.6 m/s2~19.6 m/s2 or −29.4 m/s2~9.8 m/s2

(vertical)
Measurement deviation <5% (0.1~20 Hz)
Linearity Better than 1%

Output band

Lower cutoff frequency: ≤0.01 Hz (−3 dB)
Upper cutoff frequency: ≥40 Hz (−3 dB with
sampling rates of 100 Hz or 200 Hz)
Upper cutoff frequency: ≥40 Hz (−3 dB with
sampling rates of 50 Hz)

Dynamic range >80 dB (0.1~20 Hz)
Output sampling rates 50, 100, 200 samples per second, user-selectable

Most of the stations were deployed in densely populated urban regions, or along the
fault systems threatening those urban regions. For the datum stations, they were always
installed on the bedrock and in the free field, away from the built environment where the
response of structures to earthquake shaking or cultural noise may contaminate the seismic
waveforms. The basic stations were also installed in the free field when possible, but may
have been placed in or near structures in urban settings where options are limited. Both
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types of stations choose fiber optics for data transmission and were solar powered with
battery backup to last at least two days. As for the ordinary stations, they were directly built
in the houses of the cellular towers (https://ir.china-tower.com/en/business/macro.php,
accessed on 5 July 2022) and chose their field supervision units (FSUs)’ links for real-time
data transmission. FSU is the basic processing center of the dynamic ring of each cellular
station, and it is used for monitoring equipment installed in the cellular tower and regularly
uploading their status data to the surveillance system. This could significantly improve the
3G/4G/5G network environment, effectively guarantee the data continuity, and reduce
maintenance costs.

2.2. Software System Structure

The current processing flowchart is shown in Figure 2. Each station is assigned
an internally individual and unique IP address, and this ensures that we can remotely
login to each sensor for optimizing and upgrading the software system embedded in the
device. The real-time data recorded by the datum and basic stations are directly transferred
through fiber lines to the provincial data processing center, and then forwarded to the
CENC processing center. For the ordinary stations, the real-time data are firstly transferred
through FSU links to the Shanghai Tower server, and then simultaneously forwarded to the
provincial data processing centers and the CENC processing center. With regard to each
provincial data processing center, it only receives and processes data from stations built by
itself, and stations constructed by neighboring provinces within a range of 100 km, while
the CENC processing center is responsible for processing real-time data from all stations.

All stations acquire 100 samples per second as the real-time waveform outputting
sampling rate, and follow the same low-latency data communication protocol specifically
designed for the EEWS [32]. This protocol is in HTTP format and specifies the connection
mode, data packet length, station registration, data packet serial number, instrument control
commands, waveform transmission mode, etc. The waveform transmission mode (TM)
includes three types, which are continuous wave TM, waveform TM, and non-waveform
TM when an event is triggering. Currently, the first type is used for data transmission. In
this mode, the continuous waveform data encoded in the MiniSEED format is transferred
to the seismic streaming server immediately after the connection between an instrument
and the server is built. For shortening the real-time data latency, the data packetizing mode
is changed from the original 512 to 256 bytes. Theoretically, the length of each data packet
can be as small as 0.1 s. However, taking into account the data latency and network load,
we selected a data packetizing length of 0.5 s as a compromise for data transmission.

At present, two EEW software systems are simultaneously deployed in the CENC and
each provincial data processing centers. One is the JEEW system developed by Shenzhen
Academy of Disaster Prevention and Reduction, while the other is the FJEEW system
developed by Fujian Earthquake Administration. Both systems adopt network-based EEW
algorithms for continuous earthquake location and magnitude estimation at an interval of
0.5 s, based on the currently received real-time waveform data. Detailed information for
event detection, association, location, and magnitude estimation of the two systems can be
found in [8,10].

In the JEEW system, a real-time seismic phase-picking module based on the short-
term-average/long-term-average (STA/LTA) algorithm and Akaike information criterion is
developed to accurately detect the initial P-wave arrival. Next, these picks are immediately
forwarded to a trigger pool for event association. The Tnow method proposed by Horiuchi
et al. [34] is used for earthquake location and the Pd scaling derived from [35] is adopted
for estimating EEW magnitude. When the JEEW system detects S wave for stations close to
the earthquake epicenter, we directly use the local ML scaling to compute the magnitude
for avoiding S-wave contamination [36].

https://ir.china-tower.com/en/business/macro.php
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Figure 2. Processing flowchart presenting the software system architecture of the Chinese national
EEWS. Data processing flows from the real-time stations, through the data processing centers to
the early warning information release terminals, which publishes alerts for subscribers through the
Message Queuing Telemetry Transport (MQTT) protocol. Redundant data processing centers in the
China Earthquake Network Center and provincial earthquake administrations protect the system
against power losses, hardware failures, and loss of connectivity due to earthquakes or other causes.
At each center, the uninterruptible power supply (UPS) is used to ensure that the local system is
still functioning properly when the center power fails. Multiple data processing centers can back up
each other to ensure that when one processing center fails, for example for a possible collapse of the
hosting building, the entire EEWS can still work normally. ActiveMQ Artemis in WildFly is used for
message communication between each sub-system and each data processing center. JEEW System, a
Java-based EEWS developed by Shenzhen Academy of Disaster Prevention and Reduction; FJEEW
System, an EEWS developed by Fujian Earthquake Administration; GUI, graphic user interface; APP,
mobile application.

As for the FJEEW system, a robust and real-time seismic phase picking module also
based on STA/LTA algorithm and Akaike information criterion is used to identify the initial
arrival of P-wave from a continuous waveform stream. These picks are then transmitted to
a phase association module for determining whether or not the event is a new one. A new
approach proposed by [37] is adopted for real-time earthquake location. This approach
is based on Voronoi diagram. When more than five stations are triggered, the Hyposat
location method [38] is introduced for obtaining more robust location results. Vertical peak
displacement amplitude is used for magnitude estimation. For changing the magnitude
estimation results accordingly, the peak amplitudes are measured over a moving time
window with a maximum of 10 s from the P-wave onset.

Currently, the estimated magnitude type for the two software systems is the catalog
magnitude, that is, the surface-wave magnitude MS. An empirical estimating equation
MS = 1.13ML − 1.08 is used to transfer the estimated ML to MS [39]. To create an alert, both
systems require at least three stations being triggered. As time evolves, newly triggered
stations send their data and already triggered stations send more data. The systems
continue to update the location, origin time, and magnitude estimates with these additional
data, until all data are received.

The two systems work independently within the current hardware environment, using
the same real-time data. Each system is able to detect earthquakes and send currently
triggered stations’ codes, estimated origin time, location, magnitude, and intensity at
the epicenter to the L2-level Decision Module (L2DM). This module is responsible for
combining latest solutions from the local systems for the same earthquake. It merges source
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parameters estimates according to the configured early-warning information, generating
criterion described in the next section. The merged values are then immediately sent to
the L1-level Decision Module (L1DM). Following the same generating criterion, the L1DM
combines the seismic parameters outputting from each L2DM, creates the latest early-
warning issuing message, and performs several checks to assess whether or not a warning
information should be released. These checks contains whether the event is triggered by at
least three stations and whether the estimated magnitude exceeds a predefined threshold
(M ≥ 2.0). In addition, when the warning information needs to be updated, the new result
should meet one of the following three conditions relative to the previous one: deviations
for estimated magnitude, location, and origin time are not less than 0.3 magnitude units,
0.2◦ and 2 s, respectively. If the L1DM is offline, we will directly use the results generated
by each L2DM for issuing early-warning alerts.

ActiveMQ Artemis integrated in WildFly (https://www.wildfly.org/, accessed on
7 July 2022) is used for exchanging messages between each system and modules. Final
early-warning messages are published to the specified ActiveMQ topics. Each terminal,
such as EEW warning GUI (graphical user interface), customized early-warning terminal,
APP (mobile application), and third-party platform, needs to subscribe to these topics for
receiving alerts through the Message Queuing Telemetry Transport (MQTT) protocol. The
health of the whole system is monitored by the maintenance subsystem by collecting and
summarizing state-of-health messages from each subsystem and terminal.

When receiving an alert message, the terminal uses the pre-configured seismic intensity
(SI) prediction equation to compute the local intensity based on the estimated earthquake
source parameters, and releases corresponding alarm with countdown according to the
threshold interval within which the predicted intensity is. Here, SI is similar to the modified
Mercalli intensity (MMI). Currently, four alarm levels are predefined in each terminal,
which are red (SI ≥ 7), orange (5 ≤ SI ≤ 6), yellow (3 ≤ SI ≤ 4), and blue (SI ≤ 2). The
first two can be considered disaster warning, while the last ones are notice warning. For a
disaster warning, an alarm will sound, and the screen will flash. Otherwise, there will be
no sound, and the terminal will just display the earthquake information and predicted local
intensity. Here, an integer SI value refers to intensities within ±0.5 of that value, such as SI 7,
including the range between SI (6.5, 7.5) [40]. Currently, about 300 EEW warning GUIs and
more than 2000 customized early-warning terminals have been deployed in government
units, primary and secondary schools, shopping malls, and hospitals. In addition, we
have developed an EEW app called “紧急地震信息 ” (Emergency Earthquake Information)
which can be freely downloaded through the Tencent App Store. Besides, we have signed
agreements with multiple third-party platforms for forwarding early-warning information
to the public, such as Alipay, the Sichuan National Radio and Television Administration,
and the Sichuan Zhongan Emergency Safety Technology Co., Ltd. (Chengdu, China).

2.3. Early-Warning Information Generating Criteria

In the Chinese National EEWS, we currently have two EEW software systems si-
multaneously deployed in the CENC and each provincial data processing centers. In the
near future, a third EEW software system based on the FinDer algorithm [41] will also
be deployed in these centers. With this finite-source algorithm, the simplified rupture
characteristics, including rupture location, rupture length, and rupture orientation, of an
earthquake can be estimated by comparing the spatial pattern of observed and predicted
peak ground accelerations from stations around the earthquake epicenter. Under these
circumstances, for an earthquake, we will have different processing results at the same time
because of different EEW algorithms used or different data transmission delays. Therefore,
we need to combine these results into one for consistency based on the predefined early-
warning information generating criterion. In order to generating only one early-warning
result at the same moment, we have proposed several criteria as follows:

https://www.wildfly.org/
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• Criteria 1: Speed priority. As long as there is an EEW software system result, and the
number of stations participating in the location is greater than or equal to 3, this result
will be released;

• Criteria 2: Stable magnitude. The EEW software system used for outputting the result
is specified according to whether or not its magnitude estimation is stable;

• Criteria 3: Having two different software system processing results at the same time;
• Criteria 4: Having two L2DMs’ results and two different software system processing

results at the same time;
• Criteria 5: Having two L2DMs’ results and each L2DM’s result containing two different

software system processing results at the same time.

From Criteria 1 to Criteria 5, the requirements for generating an early-warning infor-
mation become increasingly stringent. Presently, the middle one, Criteria 3, is chosen as the
predefined value. When there are two or more results at the same moment, the following
criteria are used to combine these results for optimally obtaining the source parameters:

• Epicenter and depth: When the interspace angle is less than or equal to 180◦, select
the first five stations participating in the location to calculate the average epicenter
distance of each result, and take the one with the minimum average epicenter distance
as the result. Otherwise, when the interspace angle is larger than 180◦, select the
epicenter and depth with more stations participating in the location as the result.

• Magnitude: When the deviation between the maximum and the minimum magnitudes
outputted by the individual software systems at the same time is less than 1.0, select
the maximum one as the result. Otherwise, the averaged magnitude of the maximum
and the minimum is set as the magnitude result.

3. Performance during the 2022 Lushan M6.1 Earthquake

At 17:00:08.1 Beijing Time on 1 June 2022, an M6.1 earthquake rattled Lushan County
of Ya’an in Sichuan Province. The epicenter, with a depth of 17 km, was located at 102.94◦

E and 30.37◦N. This earthquake caused the death of four people and injuries to fourteen
others, and was widely felt in several heavily populated cities, such as Ya’an, Chengdu,
Leshan and Ganzi. Maximum instrumental intensity estimated during the earthquake
was SI 9 at station SC.T2601, 6.8 km from the epicenter, and several stations had an
instrumental intensity of more than SI 8.0. The Chinese national EEWS successfully detected
and characterized the earthquake in real time using the newly built seismic network. In
the following, we evaluate the system performance from the results of real-time source
characterization and alerting performance during this earthquake.

3.1. Real-Time Source Characterization

The EEWS generated a total of five alerts for this earthquake. The real-time processing
results are shown in Figure 3, and detailed information is listed in Table 2. The two
software systems deployed in the Sichuan processing center produced the first results
almost simultaneously (17:00:13.4 Beijing Time), although there was a large deviation in
the two magnitude results. According to the pre-set early-warning information generating
criterion, the SC-L2DM selected the epicenter and depth outputted by the SC-JEEW as
the result because it used more stations participating in the location. For the estimated
magnitude, the averaged magnitude M4.2 was set as the result due to the deviation between
the two magnitudes (SC-JEEW: M4.7 and SC-FJEEW: M3.6) greater than 1.0. As for the
CA-L2DM, because there was only one result created by the CA-JEEW, the module directly
chose this result as the outputting result and forwarded it to the CA-L1DM. Based on the
same criterion, the L1DM selected values from the CA-L2DM as the results. The whole
decision-making process took approximately 0.4 s, and the initial warning message was
created at 17:00:13.8 Beijing Time, 5.7 s after the earthquake occurrence, with a location error
of 1.3 km, a depth error of less than 1.0 km, an origin time error of 0.1 s, and a magnitude
deviation of 1.4 units. Except for the magnitude estimate, other source parameters are
almost the same as the CENC catalog values.
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Figure 3. Real-time processing results of the Chinese national EEWS for the 2022 Lushan earthquake.
(a–d) are the number of used stations, the estimated magnitude, the location error, and the depth
error as a function of time, respectively. Vertical dotted lines represent alert times for the five reports.
CA-L1DM, CA-L2DM, CA-JEEW, and CA-FJEEW are the L1-level Decision Module, the L2-level
decision module, the JEEW system, and the FJEEW system deployed in the CENC processing center,
respectively, while SC-L2DM, SC-JEEW, and SC-FJEEW represent the L2-level decision Module, the
JEEW system, and the FJEEW system installed in the Sichuan processing center, respectively.

As additional data were available over time, each software system continued to revise
its respective source parameter estimates and sent its results to the local L2DM, and then
to the CA-L1DM. The combined magnitude estimate gradually increased, first exceeding
M5.0 at 17:00:16.0 Beijing Time (the second alert, 7.9 s after the origin time), then exceeding
M5.5 at 17:00:20.0 Beijing Time (the fourth alert, 11.9 s after the origin time). The final
update to the estimated magnitude was generated at 17:00:24.6 Beijing Time (16.5 s after
origin time) with an estimate of M6.1, the same as the CENC catalog value (Table 2). The
location error of each estimate remained within 2 km. However, the depth error varied
greatly, from negligible deviation in the initial estimate to 7 km, then to 12 km, and finally
back to 7 km. The estimated origin time was also affected accordingly.

Currently, the two software systems use the unweighted average of individual station
estimates from all reporting stations as the magnitude estimate, without considering the
length of data each station has recorded. This would lead to magnitude underestimation,
especially at the initial stage. Generally, a short P-wave time window (PTW) generates
correspondingly low-magnitude estimates, and these low estimates will pull down the
overall average estimate. With more data available, the estimated magnitude gradually
raised. However, as stations with short PTWs continually were added, the overall estimated
magnitude remained low, irrespective of higher estimates being produced from closer
stations with longer PTWs. Examples of the relation between the amount of PTWs used
and the estimated magnitude at each station are shown in Figure 4. These estimates were
generated by the SC-JEEW and the SC-FJEEW.
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Table 2. Detail information of the real-time processing results of the Chinese national EEWS for the
2022 Lushan earthquake. Definitions of CA-L1DM, CA-L2DM, CA-JEEW, CA-FJEEW, SC-L2DM,
SC-JEEW, and SC-FJEEW are the same as those in Figure 3.

Report
Number

Software
System/

Decision
Module

Origin
Time

Issuing
Time

Amount of
Time
Spent

Longitude
(◦E)

Latitude
(◦N)

Depth
(km) M Epicentral

SI
Number

of Stations

1

CA-L1DM 17:00:08.0 17:00:13.8 5.7 102.929 30.385 17 4.7 6.5 7
SC-L2DM 17:00:08.0 17:00:13.5 5.4 102.929 30.385 17 4.2 5.8 7
SC-JEEW 17:00:08.0 17:00:13.4 5.3 102.929 30.385 17 4.7 6.5 7

SC-FJEEW 17:00:09.0 17:00:13.4 5.3 102.929 30.355 5 3.6 5.1 4
CA-L2DM 17:00:08.0 17:00:13.7 5.6 102.929 30.385 17 4.7 6.5 7
CA-JEEW 17:00:08.0 17:00:13.7 5.6 102.929 30.385 17 4.7 6.5 7

2

CA-L1DM 17:00:08.2 17:00:16.0 7.9 102.932 30.385 15 5.1 7.0 12
SC-L2DM 17:00:08.2 17:00:15.5 7.4 102.932 30.385 15 4.3 6.0 12
SC-JEEW 17:00:08.2 17:00:15.5 7.4 102.932 30.385 15 5.1 7.0 12

SC-FJEEW 17:00:09.0 17:00:13.4 5.3 102.929 30.355 5 3.6 5.1 4
CA-L2DM 17:00:08.2 17:00:15.8 7.7 102.932 30.385 15 5.1 7.0 12
CA-JEEW 17:00:08.2 17:00:15.8 7.7 102.932 30.385 15 5.1 7.0 12

CA-FJEEW 17:00:09.0 17:00:14.0 5.9 102.929 30.383 5 4.5 6.2 8

3

CA-L1DM 17:00:08.0 17:00:16.9 8.8 102.929 30.383 10 5.4 7.4 17
SC-L2DM 17:00:08.0 17:00:16.6 8.5 102.929 30.383 10 4.8 6.6 17
SC-JEEW 17:00:08.3 17:00:16.6 8.5 102.930 30.384 15 5.4 7.4 15

SC-FJEEW 17:00:08.0 17:00:15.9 7.8 102.929 30.383 10 4.2 5.8 17
CA-L2DM 17:00:09.0 17:00:16.8 8.7 102.922 30.383 5 5.4 7.4 16
CA-JEEW 17:00:08.3 17:00:16.8 8.7 102.930 30.384 14 5.4 7.4 15

CA-FJEEW 17:00:09.0 17:00:16.7 8.6 102.922 30.383 5 5.1 7.0 16

4

CA-L1DM 17:00:09.0 17:00:20.0 11.9 102.929 30.383 5 5.7 7.8 31
SC-L2DM 17:00:09.0 17:00:18.7 10.6 102.936 30.390 5 5.5 7.5 28
SC-JEEW 17:00:08.3 17:00:18.7 10.6 102.929 30.384 14 5.5 7.5 20

SC-FJEEW 17:00:09.0 17:00:18.5 10.4 102.936 30.390 5 4.8 6.6 28
CA-L2DM 17:00:09.0 17:00:19.9 11.8 102.929 30.383 5 5.7 7.8 31
CA-JEEW 17:00:08.3 17:00:18.9 10.8 102.930 30.385 14 5.4 7.4 20

CA-FJEEW 17:00:09.0 17:00:19.9 11.8 102.929 30.383 5 5.7 7.8 31

5

CA-L1DM 17:00:09.0 17:00:24.6 16.5 102.922 30.376 10 6.1 8.3 64
SC-L2DM 17:00:09.0 17:00:24.0 15.9 102.922 30.376 10 6.0 8.2 64
SC-JEEW 17:00:08.4 17:00:24.0 15.9 102.929 30.387 13 5.6 7.7 42

SC-FJEEW 17:00:09.0 17:00:23.7 15.6 102.922 30.376 10 6.0 8.2 64
CA-L2DM 17:00:09.0 17:00:24.3 16.2 102.922 30.376 10 6.1 8.3 49
CA-JEEW 17:00:08.3 17:00:24.0 15.9 102.927 30.385 14 5.5 7.6 38

CA-FJEEW 17:00:09.0 17:00:24.3 16.2 102.922 30.376 10 6.1 8.3 49
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(asterisks) at each update for the 1 June 2022 M6.1 Lushan earthquake. The single station estimated
magnitude clearly depends on the data length used to generate the estimate. By averaging all single
station estimates available at each update, the overall estimated magnitude is clearly underestimated
because of the lower magnitude estimates calculated from the short P-wave time window. The
SC-JEEW generated results are plotted in (a) and (b), while (c) and (d) show data obtained from
the SC-FJEEW. Left, magnitude estimate as a function of time after first alert (s) to present how the
overall estimated magnitude evolved with time for this earthquake. Right, magnitude estimate as a
function of data length used for magnitude estimation.

3.2. Alerting Performance

The national EEWS uses the results derived from the real-time source characterization
to estimate the spatial distribution of expected intensity levels. Under such conditions, the
temporal evolution of the earthquake source parameters decides whether and how soon
different regions are alerted of impending intensity. In this section, we follow the method
similar to the one proposed in [6] to evaluate the alerting performance in terms of which
sites were alerted and how long leading times were.

3.2.1. Theoretical Performance from the Station’s Point of View

Firstly, the alerting performance is measured by comparing the temporal evolution of
the predicted and the observed SIs at the sites where the contributing stations are located.
From Figure 5, one can find that at each site, both the predicted and the observed SIs
changed over time. Here, the predicted SIs are evolved as the estimated source parameters
are updated.

Two time terms need to be defined for their use in leading time calculations. One is
the alerting time Talert defined as

Talert = T(SIpred(t) ≥ SIalert). (1)

SIpred(t) represents the predicted SI at time t, SIalert is a predefined alerting threshold. We
assume that each site would be alerted at the moment SIpred(t) for that site exceeds SIalert.
Here, the early-warning message transmission delay is ignored. Therefore, Talert represents
the maximum theoretical value. From the current message receiving delay of the early-
warning terminal, this step may delay the alerts by anywhere between 1 s to 5 s. The other
one is the last point in time at which a warning message is still useful for taking action, and
it is defined as

Tlast = T(SIobs(t) ≥ SItw). (2)

SIobs(t) is the observed SI at time t, and SItw indicates a predefined intensity threshold.
Once shaking is stronger than SItw, the alert received at the current moment is considered
useless because of the strong ground shaking making a person impossible to take effective
protective action. According to these two terms, we can measure leading times as

∆tw = Tlast − Talert. (3)

Based on [6], we used the same thresholds for SIalert and SItw, which are SI 2.5 and SI
4.5, respectively. For sites with SIalert ≤ SIobs < SItw, the theoretical S-wave arrival time is
set as Tlast in Equation (2) [42]. Figure 6 presents how soon the observed intensity exceed SI
2.5 at each site. One can easily find from this figure that the closer a site to the hypocenter,
the shorter the potential leading times. The sites located closer to the epicenter typically
experience higher shaking intensities, but with shorter leading times or no warning at all.



Remote Sens. 2022, 14, 4269 13 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

SIs changed over time. Here, the predicted SIs are evolved as the estimated source param-
eters are updated. 

 
Figure 5. Predicted and observed SIs computed during the 2022 M6.1 Lushan event for example 
sites S.AL001, SC.A8306, SC.A2902, and SC.TY002 with hypocentral distances of (a) 27 km, (b) 41 
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Figure 5. Predicted and observed SIs computed during the 2022 M6.1 Lushan event for example sites
S.AL001, SC.A8306, SC.A2902, and SC.TY002 with hypocentral distances of (a) 27 km, (b) 41 km,
(c) 60 km, and (d) 80 km, respectively. The L1DM predicts SIs above the alerting intensity threshold
of SIalert = 2.5 for all sites immediately after the initial warning message at 5.7 s after the earthquake
occurrence. The leading times are measured relative to either strong shaking threshold SItw = 4.5 or
the arrival time of the S-wave (if SItw = 4.5 is not reached).
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Figure 6. Leading times versus hypocentral distance for the 2022 M6.1 Lushan earthquake. Times at
SI 4.5 are exceeded by the observed shaking intensity at each station, in terms of the time when the
site is alerted. This is equal to the leading time. Each station is plotted with a specified color according
to its observed intensity. Leading times presented in this figure do not include early-warning message
transmission delays, and therefore represent the maximum values.



Remote Sens. 2022, 14, 4269 14 of 20

For the nearest sites (<20 km), shaking intensities reached very strong within 3–10 s
after the earthquake occurred, and generally both the direct P- and S-waves arrived in a
few of seconds. When the predicted intensities were obtained from the first alert, shaking
intensities at these sites had already reached moderate-to-severe levels during the 2022
M6.1 Lushan earthquake. Such sites are located within the “blind zone,” where warnings
prior to strong shaking are almost impossible.

Alerts with useful leading times were possible for sites located within 20–50 km, although
these sites experienced similar shaking levels to the nearest. Figure 6 implies that people
near these sites would likely have already felt lower levels of shaking when they received the
warning message. However, these messages may still be applicable for automated actions,
and for notifying users that shaking intensity at their location may increase.

The majority of sites are located at relatively large hypocentral distances (50–200 km).
Most of these sites had light- to moderate-shaking intensities, except some with strong-
shaking intensities. For these sites, much longer leading times are possible, generally larger
than 10 s, and the alerting messages tend to be received before the P-wave arrival, while
the peak shaking intensities are only reached after the S-wave arrive.

3.2.2. Real Performance from the Early-Warning Terminal’s Point of View

During the 2022 M6.1 Lushan earthquake, except for offline terminals, approximately
470 early-warning terminals received alerting messages. These terminals use the source pa-
rameters included in the messages to estimate shaking intensities at their sites according to
the predefined SI prediction equation. Currently, a point-source SI attenuation relationship
based on epicentral intensity is used for the local intensity estimation. This relationship is
as follows:

SIL = SIepi − 4log10(D/10 + 1) (4)

where SIepi is the epicentral intensity and D is the epicentral distance in km. The real-time
response result for the first alert and the combined result for the five alerts are shown in
Figure 7. Here, the combined result for the five alerts is not the result for the fifth alert,
and it is obtained by using the local intensity and leading time estimated according to the
received source parameters when each terminal responded for the first time.

As shown in Figure 7, the leading time trend is the same as the previous section.
The closer a terminal to the hypocenter, the shorter the leading time. For those located
within the contour line of SI 7, there were no effective warnings at all. As the epicenter
distance increases, the leading time also increases. For this earthquake, the radius of the
blind zone was approximately 30 km. As for the terminals within 30–60 km, 60–100 km,
and >100 km, the predicted intensities were generally SI 4, SI 3, and SI 3, respectively, while
the leading times were 1–10 s, 11–20 s, and 21 s for more than 1 min, respectively. These
results suggest that successful alerts are more possible for sites with low-shaking intensities
than for sites with high intensities. The reason is that for this earthquake, moderate-to-high
intensities only occur close to the epicenter, in which the seismic wave arrive quickly. This
is in line with the general expectation that regions with high-shaking intensities can often
be effectively warned in large events, but not necessarily in small- and moderate-size
earthquakes [44]. Therefore, it is impossible for an EEWS to make a ‘zero’ blind zone for
the earthquakes with a depth of less than 20 km, as for the people or buildings located in
the epicenter, when the sensors receive the seismic wave, the people or buildings will also
receive it at the same time, and computational and transmission time would lead to the
alert with a delay.
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Figure 7. Leading time maps for the (a) first and (b) final early-warning alerts during the 2022 M6.1
Lushan earthquake, with simplified contours of peak observed SI (colored lines). The contour lines
were obtained using ‘surface’ and ‘grdcontour’ commands in the Generic Mapping Tools (GMT)
software (Version 6.1.1, developed by Wessel, P. and Smith, W.H.F., https://www.generic-mapping-
tools.org/, accessed on 20 July 2022) from [43].

4. Discussion
4.1. Source Parameters Estimation for the First Alert

Rapid and reliable estimation of the source parameters and timely release of the
early-warning alert are two key indicators for an EEWS. In terms of the source parame-
ters estimation, with the increase in station density and the improvement of the network
environment, the standard deviation of earthquake location for the first alert can be con-
trolled within 5 km. This level of location accuracy has been achieved in EEWSs in many
countries or regions, such as ShakeAlert developed for the U.S. West Coast [6], PRESTo
in southern Italy [45], ESE in Switzerland [18], and a hybrid demonstration EEWS in the
Sichuan–Yunnan border region [10].

However, for moderate-to-large earthquakes, the standard deviation of the estimated
magnitude for the first alert is often large, usually smaller than 0.5 magnitude units. Cur-
rently, in the Chinese national EEWS, the two software systems directly use the unweighted
average of individual station estimates from all triggered stations as the outputting mag-
nitude, without considering the length of PTW from each station. When a new station is
triggered, the length of the available PTW from this station is usually 1 s or less than 2 s,
and the magnitude estimated with such short time window is usually less than M5.0. A
generally short time window would lead to magnitude underestimation, and influence
the overall average estimate, especially at the time when many new stations are triggered.
This can be explained by models of weak rupture predictability, in which significant dif-
ferences between smaller and larger ruptures emerge only when the smaller ruptures
start to slow down [46,47]. According to [46], the final size of an earthquake rupture
can be estimated at approximately 35–55% of the whole rupture duration. To improve
the accuracy of the estimated magnitude, we can simply introduce the method proposed
by Collombelli et al. [36] or Peng et al. [48], which took the length of the current time

https://www.generic-mapping-tools.org/
https://www.generic-mapping-tools.org/
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window of each triggered station as weight. Additionally, we are exploring the potential
of using machine-learning-based algorithms for rapid, robust, and reliable magnitude
estimation [49–51].

As for depth determination, some EEWSs just select the depth as the fixed value for
all earthquakes, such as the ShakeAlert system in which EPIC and FinDer depth estimates
are fixed at 8 km and 10 km, respectively, and they generally use the epicentral distance
for magnitude estimation and local intensity prediction [6]. However, this is not suitable
for the Chinese national EEWS, because the distance option in the attenuation relationship
used for magnitude estimation and local intensity prediction is the hypocentral distance.
In mainland China, the earthquake depth varies from less than 5 km to more than 20 km. If
the depth value is not considered, a certain bias will be introduced. Generally, for stations
close to the epicenter, a deviation of 5 km in distance estimation will result in a magnitude
deviation of ~0.5 magnitude units and an intensity deviation of ~1.0 degree. From the
results of the 2022 Lushan and other earthquakes [8,10,11], the JEEW system is much better
than the FJEEW system in depth determination. We thus should prefer the depth result
from the JEEW system. Additionally, from Figure 3 and Table 2, one can find that when
the number of stations involved in the location exceeds a certain value, the depth results
begin to deteriorate. It means that we should limit the number of stations used for depth
determination. This will be studied in future work.

4.2. Additional Data Latency in Ordinary Stations

For reducing maintenance costs and improving the 3G/4G/5G network environment,
all the ordinary stations are directly built in the houses of the cellular towers, and their data
are firstly transferred through FSU links to the Shanghai Tower server, then simultaneously
forwarded to the CENC processing center and the provincial data processing centers.
Therefore, for transmitting real-time data recorded by the ordinary stations deployed in
the western part of mainland China, such as Sichuan and Yunnan, we need to cover a
distance of thousands of kilometers, and this will lead to additional data latency. However,
according to the actual station data delay monitoring results, data latency of most ordinary
stations is less than 1.0 s, and about 80% are around 0.5 s. An example is presented in
Figure 8. This result is comparable to the latency in the hybrid demonstration EEWS [10],
in which the real-time data recorded by the MEMS-based stations were directly transferred
through 3G/4G mobile Internet signals to the processing center. It means that the effect of
distance on data latency is less than 100 ms and can be negligible.
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4.3. Algorithm Used for Ground-Motion Prediction

At present, the two software systems adopt a simple point-source algorithm for esti-
mating SIs at different target sites. Not considering the fault finiteness would cause serious
ground-motion underprediction for destructive earthquakes with magnitude greater than
7.0. This limitation can be efficiently solved because we are now integrating the FinDer algo-
rithm into the EEWS and testing it with the historical earthquake data [52]. This algorithm
uses a template matching method to rapidly obtain the rupture length, orientation, and
location. It then converts the estimated rupture length to a magnitude with the empirical
rupture–length–magnitude relation of [53].

4.4. Relatively Large Blind Zone

From the real alerting performance for the 2022 Lushan event, although the first alert
was sent out 5.7 s after the earthquake occurrence, the radius of the blind zone was not
10 km (under an S-wave velocity of 3.5 km/s and a depth of 17 km), but about 30 km,
seriously restricting the effectiveness of the EEWS, especially for those sites located within
the contour line of SI 7.0 (Figure 7). This was mainly caused by the fact that the releasing
system did not consider the epicenter distance of each terminal when issuing the early-
warning information, leading to the terminals closer to the epicenter not receiving alerts
at the first moment. This shortcoming can be improved by adding a terminal-epicenter-
distance sorting function before releasing the alert information.

5. Conclusions

With several years of construction, the Chinese national EEWS project is nearly com-
pleted, and several areas have officially entered in the trial operation stage by providing
the early-warning information service to the public. In this paper, we present the newest
progress of this project through describing the overall architecture of the EEWS and evalu-
ating the system performance during the 2022 M6.1 Lushan earthquake.

Firstly, we introduced the seismic network composition, software system structure and
newest criteria for generating early-warning information. For ensuring more stable and
accurate results, the software system and criteria for outputting early-warning information
were always being improved and optimized. Then, we discussed the accuracy of the source
characterization for the 2022 Lushan earthquake by comparing the continually estimated
location and magnitude with the ones obtained from the CENC catalogs. Next, we exam-
ined the theoretical and real alerting performance based on the current configurations. For
this earthquake, the EEWS generated a total of five alerts, and an initial alert was created
5.7 s after its occurrence, with excellent epicentral location and origin time estimation. The
final alert was issued 16.5 s after origin time with a magnitude estimation of M6.1, the same
as the catalog value.

Although the EEWS exposed some limitations that need to be addressed in future up-
grades, the results showed that most aspects of the EEWS presented a robust performance,
with reliable event detection and early-warning information releasing. In conclusion, with
continuous improvement and optimization of the system, the early-warning alerting in-
formation will be more accurate, the radius of the blind zone will be reduced, and timely
issuance will be achieved for possible large earthquakes in the near future.
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