

Assessing the Influence of Climate Forcing Data Resolution on Simulations of Glacier and Freshwater Dynamics for the Flade Isblink Ice Cap, Northeast Greenland

Muhammad Shafeeque, Anouk Vlug, and Ben Marzeion

Introduction

Discover how high-resolution climate data is key for accurate glacier 📤 & freshwater runoff 🤩 modeling and how even coarse datasets can yield accurate simulations with proper regional scaling.

Global Scale Climate Datasets

Regional Scale Climate Datasets

Mass balance

Simulated mean mass balances match observations across datasets and model settings.

Glacier thickness and volume

- High-resolution WRF closely matches reference glacier volume; low-resolution models **(3)** improved with scaling.
- Sensitivity analysis: volume increases with precipitation and decreases with temperature.
- Statistical significance confirmed the impact of resolution and scaling on volume simulations.

Freshwater runoff

Pre-scaling: underestimation by 25-34% for coarser datasets compared to WRF (9.81 \pm 2.39 Gt/yr).

Post-scaling: discrepancies reduced to 0.5%-1.6%. Effectiveness increases with resolution (ERA5 vs CRU).

Insignificant differences in runoff (p=0.97), highlighting role of regional scaling in standardizing runoff simulations.

Conclusions

high-resolution climate data enhances accuracy & confidence

potential of regional scaling for costeffective alternatives with coarse data (##)

balancing model complexity with computational demands

