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• Accurately predicting ground motions for future large earthquakes is crucial for seismic hazard analysis
and limited data necessitates ground motion simulations.

• Dynamic simulations – Physically accurate but computationally demanding
• Kinematic simulations - Efficient yet rely on predefined slip evolution.
• Pseudo-Dynamic simulations (PD) - Integrating physics-compatible source within a kinematic approach

(Guatteri et al., 2004; Graves and Pitarka 2010; 2016; Song et al., 2013).
• We present a machine learning (ML) based PD rupture generator framework to analyze the following

earthquake source parameters:
o Rupture velocity 
o Peak slip velocity
o Modifications to source time function (STF)

• Validation for Mw 6.5 strike-slip scenario using NGA West 2 Ground motion models (GMMs).

• We use dynamic rupture simulations on vertical rough strike-slip fault from Mai et al., (2018) with 21
source models across 3 roughness realizations and 3 hypocentre locations.

• For our study, we use 15 source models for training and 6 for validation.
• Figure 1 show rupture parameters - Slip, Rupture speed (Vr), Peak slip velocity (PSV) and Rise time (Tr)

extracted from the dynamic rupture simulation (Mai et al., 2018).

Figure 1. Roughness and rupture parameters (Slip, Vr, PSV and Tr)  extracted from dynamic rupture 
simulation (Mai et al., 2018). Rise time is computed from a best fitting Yoffe to dynamic STF (bottom right).

• Dynamic rupture simulations show rupture deceleration (acceleration) in regions of variable roughness
gradient, coinciding with fault areas of increased (decreased) on-fault shear stresses.

• We train a ML framework involving Fourier Neural Operators (FNO) (Li et al., 2020), establishing relations
between, static stress drop, hypocentre distance and Vr (Figure 2).

• Figure 3 shows the Machine Learning estimations for two test cases.

A. Rupture Velocity

Figure 2. Fourier Neural Operator (FNO) architecture 
used in this study (Top). Inputs to the Vr model are 

static stress drop along strike and dip directions and 
hypocenter distance.

Figure 3. Machine learning estimations for Vr for two test 
cases. The top row represents original rupture speed whereas 
bottom row are the estimates. Onset times are obtained using

a fast-marching algorithm.

B. Peak slip velocity and Rise Time

C. Modifications to STF

Test case #1 Test case #2

Inputs for Vr

• PSV is closely correlated with Vr (Figure 1) and hence, we train a FNO model (Figure 2) relating Vr with PSV.
• We limit the max(PSV) to be 5 m/s following Andrews et al., (2005).
• Assuming a Yoffe STF, we calculate Tr empirically from Tinti et al., (2005) using
• Figure 4 show ML estimated PSV and Tr for two test cases.
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• Large and small scale variations in the STF affect wavefield radiation and enrich higher frequencies.
• We train a FNO model (Figure 2) where the target output is Dynamic STF and the input is the corresponding best
fitted Yoffe STF (Figure 1 bottom right). Figure 5 show an example of estimations by the ML model.

Test case #1 Test case #2

Figure 4. Machine learning estimates for PSV (Left group) and Tr (Right group). Top row and bottom row represents original and estimated 
parameters.  

Figure 5. Modified version of Yoffe STF estimated using ML. 

• To validate our rupture generator, we generate stochastic source model with steps outlined below.

• We perform ground motion simulations in a 1D layered medium (Graves and Pitarka 
(2016)) with resolved max. frequency of 8 Hz (Figure 8).

• We account for anelastic attenuation using frequency dependent power law.
• PGV shakemap and velocity ground motions (Figure 8) highight local and global directivity 

effects. 
• We compare RotD50 spectral accelerations with 4 NGA West2 GMMs (Figure 8).

• Our Pseudo-dynamic rupture generator enables a full spatio-temporal characterzation of earthquake source 
that accounts for dynamic rupture on rough faults and conditioned only on slip and hypocenter location .

• Simulations of Mw 6.5 strike slip scenario show global and local directivity effects.
• The simulations follow GMMs at distances larger than about R ~ 3-5 km. At short distances and high 

frequencies, our simulated motions are higher than GMM-estimates, which we attribute to two effects: (i) 
missing 3D effects, and seismic scattering in wave-propagation; (ii) incomplete datasets of near-field ground-
motion recordings for GMM-development.

Figure 7. ML estimaties of modified STFs. Blue curves are modifications to Yoffe STF shown in red. Total moment rate is 
shown in top right. Adding variations makes source spectrum more closely follow Brune’s model (bottom right).
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Figure 8. Velocity structure for 
simulations (top right). PGV 
shake map (centre) and velocity 
and acceleration motions 
(middle left and right 
respectively). Comparison with 
GMMs at different spectral 
periods (bottom row).

• Random slip and hypocenter location for a hypothetical Mw 6.5 earthquake scenario following Mai and Beroza
(2002) and Mai et al., (2005) respectively.

• Machine Learning models to compute Vr, PSV, Tr and STF modifications (Figures 6 and 7).

Figure 6. Kinematic source parameters for a hypothetical Mw 6.5 strike-slip earthquake. We begin with a random slip (Mai and Beroza 
(2002)) and a slip-conditioned hypocenter location (Mai et al., 2005). Thereafter, we compute the static on-fault stress drop. Parameters 

Vr, PSV and Tr are obtained using a ML approach.
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