

Contribution of SLR to satellite-only global gravity field model

B. Suesser-Rechberger, T. Mayer-Guerr, S. Krauss, P. Dumitraschkewitz, F. Oehlinger, C. Tieber-Hubmann

Institute of Geodesy Graz University of Technology

EGU General Assembly 2024, Vienna 2024-04-19

Combined satellite-only global gravity field models

Advantage: Compensates for the weaknesses of individual observation techniques.

Issue: The combination of solutions from different institutions can have an impact on the performance due to the use of different methods and algorithms.

Goal: Consistent computation of the next Gravity Observation Combination (GOCO) model.

Software toolkit GROOPS

Perform all evaluations with a uniform software package!

Software toolkit GROOPS

Gravity field coefficients estimation – Process flow in GROOPS

• Orbit integration using the given forces (State-of-the-art models, e.g. AOD1B-RL06, GOCO06s...) → Integral Equation appr.

÷

program

PreprocessingVariationalEquation

• Fit the integrated orbit to initial orbit positions (e.g. CPF provided by ILRS...)

PreprocessingVariationalEquationOrbitFit

Gravity field coefficients estimation – Process flow in GROOPS

·	Orbit integration using the give	en forces (State-of-the-art models	, e.g.	AOD1B-RL06,	GOCO06s…) → In	itegral Equation appr.
	🗉 🛑 program	PreprocessingVariationalEquation	n			
	Fit the integrated orbit to initia	al orbit positions (e.g. CPF provide	ILRS)			
	🕀 🖿 program	PreprocessingVariationalEquation	Orbit	Fit		
				7		

 Process weekly SLR NP or FR observations and estimate the dynamic orbit positions, station range bias and gravity field coefficients (stored in a normal equation system). Using VCE for stations weighting and outlier detection.

🕨 program

÷...

SlrProcessing

Gravity field coefficients estimation – Process flow in GROOPS

₽ ■ program	e given forces (State-of-the-art models, e.g. AOD1B-RL06, GOCO06s) → Integral Equ PreprocessingVariationalEquation	ation appr.			
Fit the integrated orbit to initial orbit positions (e.g. CPF provided by ILRS)					
🗉 🛑 program	PreprocessingVariationalEquationOrbitFit				
Process weekly SLR NP or FR observations and estimate the dynamic orbit positions, station range bias and gravity field coefficients (stored in a normal equation system). Using VCE for stations weighting and outlier detection.					
(

• Accumulate to a monthly normal system and solve it. Using VCE for relative weighting between the individual normals.

🕨 🛑 program 🛛 👘 NormalsAccumulate

program NormalsSolverVCE

• Evaluate the time variable gravity field and save it as spherical harmonics

program Gravityfield2PotentialCoefficients

Gravity field coefficients estimation – Settings

Using state-of-the-art force models and following further settings:

Satellites	Ajisai, LAGEOS-1/2, Starlette and Stella		
Station coordinates	ITRF2020		
Tropospheric refraction model	Mendes & Pavlis		
Center of mass corrections	1.01 m (Ajisai), 0.251 m (LAGEOS-1/2), 0.075 m (Stella, Starlette)		
Normal points weighting	yes		
Arc	~ 7 days		
Estimated arc parameters:			
Atmospheric drag coefficient	Once per day (constant bias for along and cross)		
Empirical accelerations	Once per revolution (sin, cos) along track		
Station range bias	Once per arc		
Satellite state vector	Once per arc		
Gravity field coefficients	Per arc, up to spherical harmonic degree and order 5, and $c_{61}^{}$, $s_{61}^{}$		

2006 2008 2010 2012 2014 2016 2018 2020 2022

2006 2008 2010 2012 2014 2016 2018 2020 2022

2006 2008 2010 2012 2014 2016 2018 2020 2022

2006 2008 2010 2012 2014 2016 2018 2020 2022

Summary

- Extended the functionality of GROOPS by the feature satellite laser ranging (SLR).
- Utilisation of state-of-the-art models.
- Results of the time variable part degree 2 coefficients are promising and show similar behaviour to Centre for Space Research (CSR) and Austria Academy of Science (AAS) solutions.

Outlook

- We plan to release the GROOPS source code with the SLR functionality in the next few weeks.
- Consistently computation of the next Gravity Observation Combination (GOCO) model.

Acknowledgement

The authors acknowledge financial support by the Austrian Research Promotion Agency (FFG) in the framework of the Austrian Space Application Program (ASAP 18, Project COVER, 892650).

FFG

Thank you!

Additional Slides (1)

Force models

Static gravity field + annual + trend	GOCO06s
Atmosphere + ocean de-alising, atmospheric tides	AOD1B-RL06
Astronomical tides	JPL DE432
Earth tides, pole tides, relativistic effects	IERS2010
Ocean tides	FES2014b
Ocean pole tides	Desai 2004
Atmospheric density model	DTM2020
Earth radiation pressure	Albedo and long wave flux