Whence the demise and fall of the RNA world?
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Abstract The transition from an RNA World to the DNA World Why is DNA fitter than RNA? When and why did all life become DNA based?
The nature of the steps leading to the takeover of an RNA(+/-Peptide) World (RNA/RNP) by DNA remain generally

A widely promulgated concept for the fundamental ancestor-descendent relationship in uninvestigated. It seems that RNA cannot encode the enzymes needed for the formation of DNA; there is a vast RNA+DNA+protein WorId

the origin of life (OoL ), and hence the inception of Darwinian Evolution, is the RNA World difference in the amount of information encoded by the two molecules. Several steps are required from RNA/RNP to - Pre-RNA World RNA World RNA+protein World N il ly,
hypothesis. Even if life on Earth began with a simple RNA molecule that had the ability to DNA that involve intermediates like methyl-RNAs. These include: : - 4 ) A N %

o PROTO-BIOLOGICAL STAGES / 7 ™5 BIOLOGICAL STAGES
replicate itself, it did not stay that way. DNA emerged and became the preferred H & H | MG
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informational molecule, leading to the establishment of the contemporary DNA+Peptide [1] reduction of ribonucleotides (to form deoxyribonucleotides)

ABIOTIC.STAGESE prebiotic chemistry » V?NOQC Jiz 2 2. 2 universal cenancestorcells ? :
World. Understanding what could have driven the transition from an RNA(+/- Peptide) to 2] the formation of a double-strand (later the helix, spontaneously?), and

- : - o : 3] the replacement of the nucleotide uracil with thymine. H l e e
DNA World necessitates a biogeodynamic contextualization of the co-evolution of the 5] P y e | f-organizing chemical syst heredity based on simple RNA templat

Uracil - simple bioenergetics in amphiphilic proto-cells | - biosynthesisof ribonucleotides : ' , ,
. . . . - invention oftransduction and the genetic code | ~4neorparation QfDHARs genetcmatersl
early Earth environment with, for example, the evolution of key metabolic styles. Again, DNA is much more stable than RNA. It is less sensitive to heat, stable in seawater salinity, g r—

M and proteins with 20 amino acids that can catalyze a much larger variety of chemical reactions

Complex organic / Figure 1

molecules produced wmp mmp RNA = Proteins = DNA Generalised model of the RNA(+/- Peptide) World concept. The timeline TraCkl ng dOWﬂ the tranSIthn (e g CO NI Fe S & CO-faCtO rS) COnCI USiOnS and FUtU re PI'OS pECtS

—
by random chemistry \j here is arbitrary owing uncertainties over the nature and timing of this

transition. Along with RNA, Peptides may have been present in these early o NH>

;-biosynthesisof deoxyribonucleotides & /// ////// i \\
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oon. j\ong sepides may T ) Present In hess ear HO 0 The RNA World hypothesis is a temporary phase in the origin of life. If this is correct, it means that from
MiXtures, u ey were likely Sho polymers a est an uniike e Base o, o Base 2 { ot o ) ] o . .
\4 RNA World  RNP World LUCA complicated functional proteins of today. LUCA (last universal common S ST f ) an RNA World origin life ultimately went through a transition into a DNA+peptide World.

ancestors) were already a DNA organisms with RNP and RNA enzymes
(Cech 2012).

> — Absence of a fossil record from this transition calls for a new approach - biogeodynamics

e Trace metals can yield some clues and the transition likely happened in several steps.

Eialire 5 Tho Fotleive BCanIEoan oy e A (ACSHECORY o Wosd-Litnadant (wat) — One of the most important of these steps would be the reduction of ribonucleotides (Ror)!
pathway (e.g. Braakman and Smith 2012; Ragsdale and Pierce 2008). Biosynthesis via ® The key enzyme for this is ribonucleotide reductase - RNR

m m m the autotrophic acetyl-CoA pathway uses free hydrogen from the environment as an . . .
The RN A Wo rl d - d b I OQQOdynam 1C pe S peCtlve Figure 3. The model of the Class Il type of  Figure 4. Chemical structure of cobalamin (vitamin B12) - Co*ion s~ electron donor, and carbon dioxide as an electron acceptor. LUCA (AFTER the — Class Il RNR uses cobalamin (adenosylcobalamin) as a cofactor in the absence of free oxygen

RNRs, which use adenosylcobalamin as in the ring. Cobalamin is a complicated vitamin B structure, but RNA/RNP World!) used this W-L pathway in a primordial H, -powered biosphere, o . :
$ nevertheless can be formed under pre- or proto-biotic conditions perhaps at mildly alkaline hydrothermal settings (e.g. Brabender+ 2024) e Cobalt is the active metal center of cobalamin

i - their cofactor (Gruber+ 2011) : .g. :
EOte ntla|S & Eltfal IS (Monteverde+ 2016) ® Rise in free oxygen (Great Oxidation Event), mantle cooling and changes in the geodynamics of the

| crust (ultramafic to mafic; initiation of plate tectonics, etc.) = replacement of Co with Fe in

o M pyite 1 Ni in BIF sulfides ® M pyite

. . e _ . : ‘ol o Q » _‘ ; 1 oo e | s Gl L enzymatic systems. This chemical evolution continues apace with Cu, Zn and others.
e Biological entities exhibit (Ganti 1997): e RNA by itself is fimsy compared to DNA _ ST T ek | ] ° y Y p

o MDF pyrrhotite )
n=327

o MDF pyrite
n=335

Metabolism, encapsulation, information o breaks down at temperature (>50° C);
o Each can, arguabiy, be the Starting loose incorporation of wild peptldeS’)
point (ex. lipid world hypothesis) o sensitive to pH (>8); 5.5-7 ideal?
o But, only information is capable of o unstable at seawater salinity (viz. Mg**
Darwinian Evolution Ca**, Mn**, Fe?"); freshwater origin? s O N v Y Y Y Y YA e How can we narrow down the time frame of the transition in relation to GOE?

e DNA is self-catalytic and highly stable, o high mutation rate (i.e. “junk” products) : = o e Can we model the earliest enzymes? What coding capacity was needed for their appearance?
bUt fabUIOUSIy COmpleX (nOt at OOL) O ineffective repair meChanismS e A —i 2; — ———————— d Figure 6. (A & B). Evolution of key metals found in metallo-enzyme active centers vs. time and as a function of calculated

3 Bilion years ago concentration in marine waters. (C). Mass-Dependent Sulfur isotope fractionations (MDF) in sediments with time. Note

O RNA can Self-replicate' ® The Pre biOtiC Chemist!s Nightmare o changes in range of MDF at different times. Compare this to (D & E): Records of trace Co and Ni in banded iron-formation

(BIF) sulfides with time. Note the general decrease in Co and Ni content at time of GOE (vertical blue bar) which we attribute

: . . . . odels of Saito et al. : Zerkle, House and Brantle - adapte nbar to ch in th d ' ' f t f i t ition f It fict fi t, cf. Konh 2009, 2011).
- Shorter, one Strand - Simpier moiecuie N preb|0t|C Catalyt|C reaCt|OnS |eft Models of Saito et al. (2003); Zerkle, H d Brantley (2005); adapted by Anbar (2008) o changes in the geodynamic regime of crust formation (transition from ultramafic to mafic crust, cf. Konhauser+ )

o Non-linear - highly folded unattended yield asphalt (Benner 2023)
- Extremely high mutation rate — how to form & stabilize RNA polymers?
o Possibility of rapid selection (Jerome+ 2022; Sponer+2023)

Ongoing work poses the following questions:

- WAk 1 - ey : e \What other enzymatic processes played a role? Were there other metals in the active centers like
] NRCRFY ' cobalt and nickel?
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