Very minor ions in the magnetosphere: a hub of the mesospheric, ionospheric, magnetospheric, solar wind, lunar, and meteoroid sciences

ISSI team #518 (https://www.issibern.ch/teams/mmiconmagnet/)

M Yamauchi¹, S Christon², I Dandouras³, S Haaland⁴, D Kastinen¹, LM Kistler⁵, I Mann⁶, S Nozawa⁷, JMC Plane⁸, Y Saito⁹, L Schulz¹⁰, S Watababe¹¹, P Wurz¹², and AW Yau¹³

recently submitted to Space Sci. Rev.

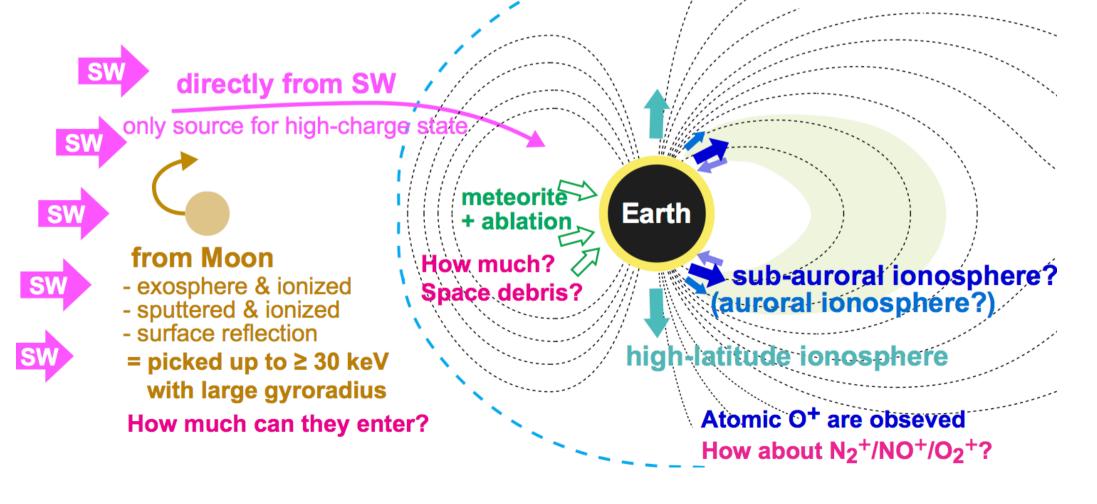
1 Swedish Institute of Space Physics (IRF), Kiruna, Sweden; </br><M.Yamauchi@irf.se>

2 Focused Analysis and Research (FAR), USA; 3 IRAP, Toulouse, France; 4 U Centre Svalbard, Norway; 5 U New Hampshire, USA; 6 UiT, Tromsø, Norway; 7 Nagoya U, Japan; 8 U Leeds, UK; 9 ISAS, Japan; 10 TU-Braunschweig, Germany; 11 Hokkaido Information U.; 12 U Bern, Switzerland; 13 U Calgary, Canada

Sharing is

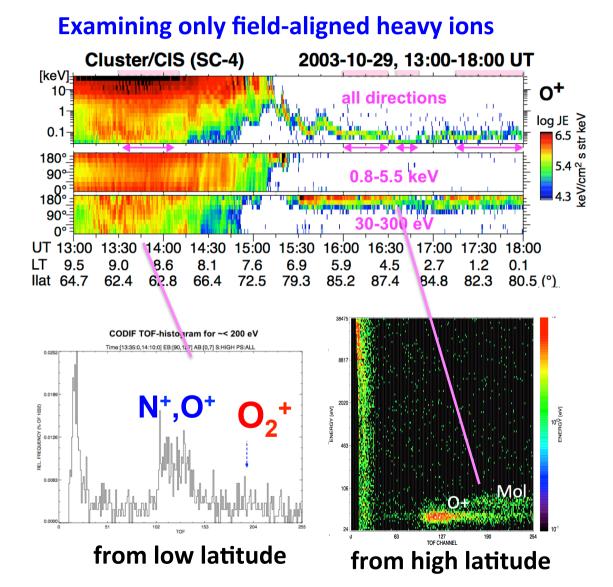
encouraged

EGU24-5648 (X3.73)

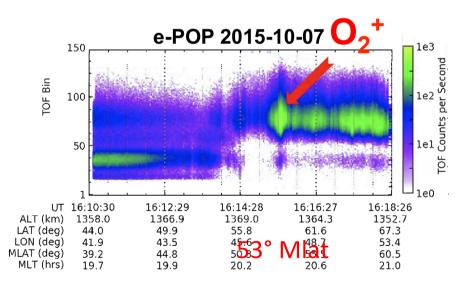

Magnetosphere is zoo of many ions

Very minor ions ⇒ lons from minor sources can be detected

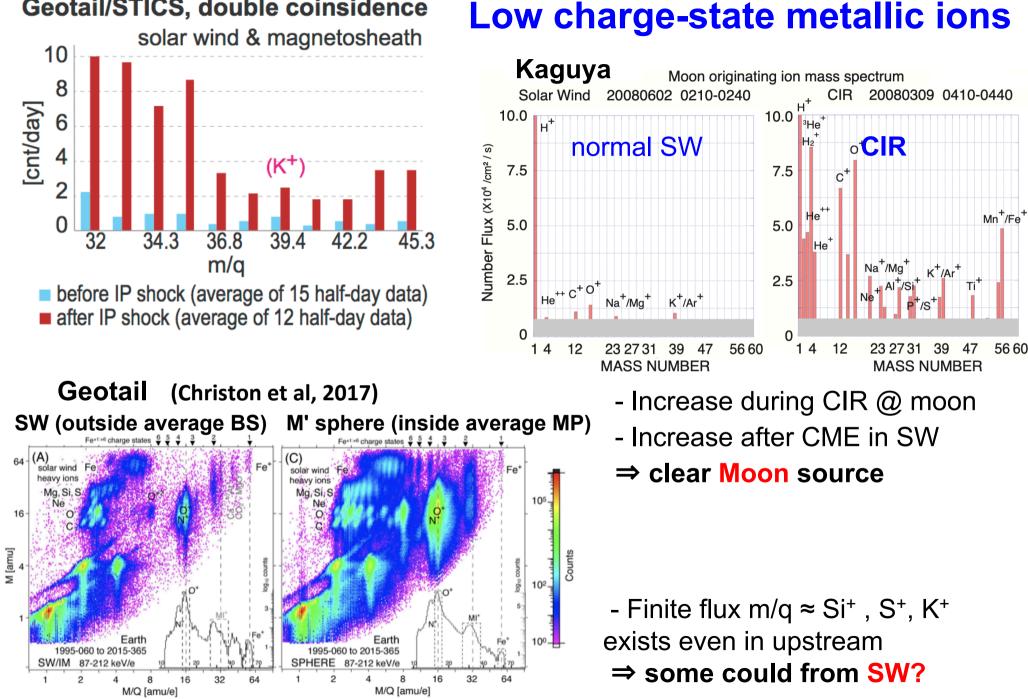
- (1) Molecular ions : lonosphere
- (2) Low charge-state metallic ions : Moon (+ Solar Wind) + Thermosphere/Mesosphere


(originally from Meteoroid (+ Space debris?))

sources of Si⁺, Fe⁺, O₂⁺, ..., Al⁺, and high-charge state ions

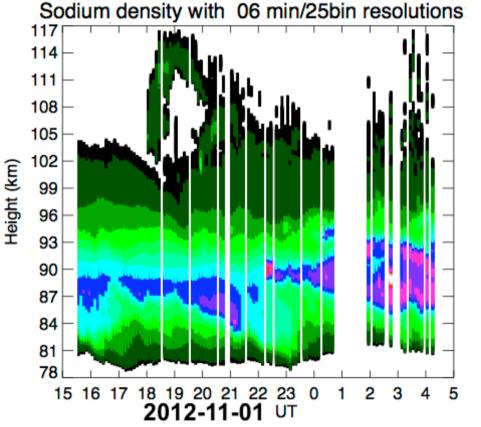


Cluster

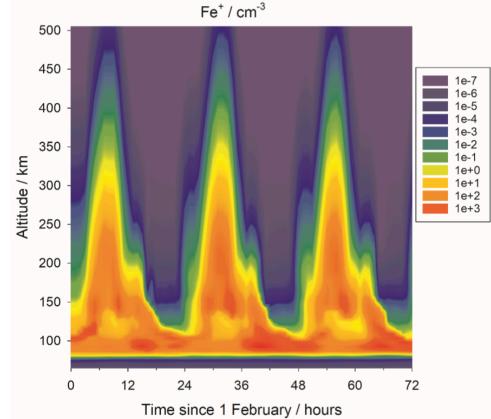

Molecular ions of m/q > 20

We recently found **direct lowlatitude source** in addition to **highlatitude source** both in magnetosphere (Cluster) and above the ionosphere (e-POP)

⇒ science of ionospheric
process + acceleration

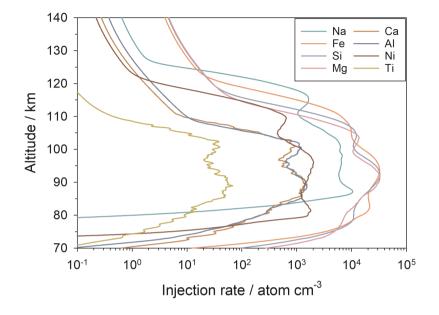

Geotail/STICS, double coinsidence

Low charge-state metallic ions

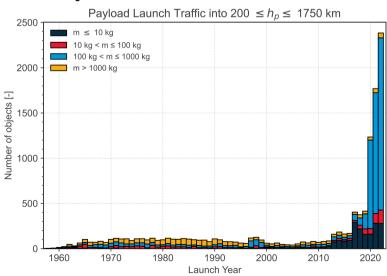

Upward lift during Geomagnetic Storm

Might reach exobase during summer

Na lidar

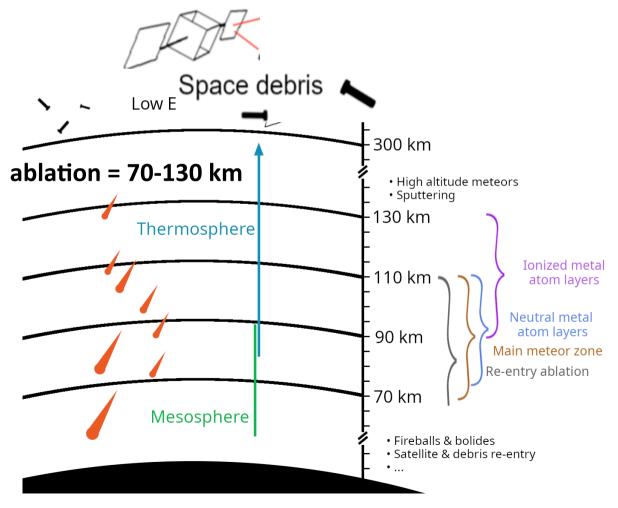


WACCM-X Model



- Na lidar detected lifting to ionosphere
- model expects reaching to the exobase.
- ⇒ Mesospheric source

Model (ablated meteoroid)



sharp increase of satellites

Low charge-state metallic ions

- (3) Ultimate supply to the mesosphere
 - ⇒ meteoroid **ablation** physics
 - ⇒ why not **space debris?** (=no data)

Thus, science of heavy ions (m/q>20) is interdisciplinary

(1) Molecular ions: recently found low-latitude source in addition to high-latitude source ⇒ need ionospheric observation and models

(2) Low charge-state metallic ions: coming from both upstream and ionosphere

- Moon observations are qualitatively consistent
- Direct contribution from the **solar wind** cannot be removed
- Mesospheric/thermospheric observations/models are qualitatively consistent
- Meteoroid observations and model also support mesospheric source
- Even detectable contamination from space debris is expected from the model

Scientific roles of very heavy ions

(1) molecular ions

source	science
lonosphere	acceleration

(2) low charge-state metallic ions

source	science
Solar wind	as marker to enter the magnetosphere
Moon	above + moon wake effect
Metal layer	thermospheric/mesospheric dynamics
Meteoroid	ablation process
Space debris	above + monitoring pollution

However, too few observations @ inner magnetosphere

(1) Dedicated obs. (molecular ions)

mission	specification
Arase	altogether (0.05–100 keV)
e-Pop,	altogether (<50 eV)
Akebono, DE-1	each (<50 eV)
Geotail, Wind, Ampte	altogether (>100 keV)

(2) Dedicated obs. (metallic ions)

mission	specification
Geotail, Wind	each (> 100 keV)

⇒ **Need missions** + monitoring of source (Moon, mesosphere....)

- (A) Best is **dedicated mission**, even as a secondary objective of any mission.
- (B) Realistic option is placing a set of instruments on non-science missions
 - Earth Observation Satellites
 - **Space Safety** missions (including geostationary one)
 - Transfer spacecraft to/from the coming Lunar Gateway.
 - The Lunar Gateway itself (already plan have Ion Mass Spectrometer (SPAN-Ai) with 2 eV 40 keV, m/∆m ≈10).

Why was detecting difficult, and how should we design?

- 1. Limited energy range in the past design (< 90 eV/q for e-POP or > 10 keV for Geotail).
- 2. Finite entrance cross-section of the instrument reduces the mass resolution.
- 3. Small geometric factor with very low ion flux.
- 4. Fragmentation of molecular ions at the start foil of time-of-flight (TOF).
 - 1 3 ⇒ new design available for 0.01 30 keV with m/∆m ≈ 50 (BepiColombo/MIO) & for < 0.02 keV with m/∆m ≈ 1000 (JUICE)

Recommended payload for future missions

Key instruments

- (1) First ion mass spectrometer with $m/\Delta m > 60$ for wide mass range up to Fe⁺ (m/q > 60),
- (2) Second ion spectrometer with lower mass resolution (yet $m/\Delta m > 15$) but sufficient angular resolution < 22.5° (6° is ideal to detect the position where the ions are generated around the Moon), while keeping mass range up to m/q > 60.

Other instrument

- (3) Total ion flux without mass resolution but with very good ∆E/E for absolute accuracy in velocity and density
- (4) optical limb observation from satellites has also advanced, e.g. sounding of Mg+.

For all (1)-(3), The energy range are divided into (a) < 20 eV, (b) 0.01-30 keV, (c) > 20 keV.