

Unraveling biogeochemical transformation of organic carbon and nitrogen turnover in groundwater along the hillslope transect

¹Thanh Quynh Duong, ^{2, 4}Anke Hildebrandt, ^{1, 3}Martin Thullner

- (1) Department of Applied Microbial Ecology, UFZ,
- (2) Department of Computational Hydrosystems, UFZ, Leipzig, Germany
- (3) Federal Institute of Geosciences and Natural Resources (BGR), Hanover, Germany
- (4) Institute of Geoscience, Friedrich Schiller University Jena, Germany

Leibniz Ipht 🔘

Introduction: The Earth's Critical Zone: where all of life happens

Collaborative research Centre AquaDiva Understading the links between Surface and Subsurface Biogeosphere

The Earth's Critical Zone = earth's thin, heterogeneous, living, permeable layer

rock, soil, water, air, and living organisms

"biogeochemical reactor" transforms water, gases, and other materials

require a large transdisciplinary team

Source: Konstanze Hild,2022 https://www.youtube.com/watch?v=aezWKCQxR5U **BIOGEOCHEMICAL CYCLES**: cycles of chemical elements and compounds between the living and non-living parts of the Earth

SUBSURFACE IS A BIG STORE OF C &N

WATER-UNSATURATED ZONE

MAIN CHALLENGE: SPATIAL HETEROGENEITY OF THE SUBSURFACE

Transformation of C, N mediated by microbes

C, N, and microbes distribute heterogeneously

ersitat Leibniz **ipht** 🔇

UFZ) HELMHOLTZ Centre for Environmental Resear

The overarching aim of the modeling

• How deep penetrate signals from the

surface?

• What are the long-term effects due to

climate and land use change?

Ē

STUDY SITE: HAINICH TRANSECT

- Located northwest of Thuringia (central Germany) in a hillslope sub-catchment Nägelstedt of river Unstrut (850 km²)
- Hainich CZE: 5.4km long hillslope transect.
- Intensively monitoring of surface and subsurface

TRAVEL TIME-BASED MODEL APPROACH

500 750 1000 1250 1500 1750 2000

time(days)

H21 H22 H23

---- H32

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

20000

40000

Simulated concentration cj(t) of reactive species j

along a flow path

time(days)

60000

80000

1. Flow model of Hainich CZE

2. Schematic of simulated biochemical reaction networks

0.008 -

0.006

g 0.004 -

0.002

0.000 -

0 250

 $c_{i,j} =$

 $p_i(t) \cdot c_j(t) dt$

25000 50000 75000 100000 125000 150000 175000 200000

time(davs

— H51 — H52 — H53

Combine 1st and 2nd components, we have: 3.Simulated concentration of species j at well i

UNIVERSITAT

Leibniz **ipht** 🔿

Travel time distribution pi(t) for well i

— н4з

100000

Flow model of Hainich CZE transect

FLOW PATHS AND TRAVEL TIMES TO THE OBSERVATION WELLS

_{:haft} 10

BIOGEOCHEMICAL PROCESSES ALONG 1D FLOW PATHS

- 1D advective-dispersivereactive transport
- Upper 50m of profile: aerobic
 conditions, abundant supply
 of oxygen
 - Numerical mesh grid: nonuniform, with grid sizes ranging from fine to coarse.
 - Total length (L) = 20000m
 - Total time (t) = 200000 days

Leibniz **ipht** 🔿

Biogeochemical processes along 1D flow paths BIOCHEMICAL REACTION NETWORK

Chemical compounds:

- 1. dissolved organic carbon (DOC)
- 2. Particulate organic carbon (POC)
- 3. Oxygen (O₂)
- 4. Nitrate (NO₃)
- 5. Sulfate (SO₄)
- 6. Ammonium (NH₄)

Microbial species:

- 1. Aerobic DOC degraders (BO2)
- 2. Nitrate reducers (BNO3)
- 3. Sulfate reducers (BSO4)
- 4. Ammonia oxidizers (BNH4)

• 23 concentration variables

Leibniz **ipht** 🔿

• 68 microbially driven reactions expressed by modified Monod-type expressions

12

TRAVEL TIME-BASED MODEL APPROACH

500 750 1000 1250 1500 1750 2000

time(days)

H21 H22 H23

- H32

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

20000

40000

Simulated concentration cj(t) of reactive species j

along a flow path

time(days)

60000

80000

1. Flow model of Hainich CZE

2. Schematic of simulated biochemical reaction networks

0.008 -

0.006

g 0.004 -

0.002

0.000 -

0 250

25000 50000 75000 100000 125000 150000 175000 200000

time(davs

— H51 — H52 — H53

Combine 1st and 2nd components, we have: 3.Simulated concentration of species j at well i

 $p_i(t) \cdot c_j(t) dt$ *c*_{*i*,*j*} =

Leibniz **ipht** 🔿

DFG Deutsche Forschungsgemeinschaft

13

Travel time distribution pi(t) for well i

— н4з

100000

Leibniz **ipht** 🔿

THE MIXING RATIO DETERMINED BY NITRATE CONCENTRATIONS BETWEEN THE BASE AND CROPLAND CASES

UFZ)

Confirmed spatial variations of land use-dependent input.

 H31 and H32 receive 30% to 50 % water from the cropland areas (which generally agrees with the origin of flow paths predicted by the flow model)

Suggesting a strong link with the surface signals.

SIMULATED CONCENTRATION OF REACTIVE SPECIES AT GROUNDWATER WELLS

UNIVERSITAT Leibniz **ipht**

UFZ) HELMHOLTZ Centre for Environmenta DFG Deutsche Forschungsgemeinschaft

MICROBIAL DISTRIBUTIONS AT GROUNDWATER WELLS

Percentages

- Aerobic degraders dominate communities at most wells.
- Mobile active aerobic degraders contributed the most to microbial biomass at wells with short travel times (H21, H22, H23, H32)

FRIEDRICH-SCHILLER-UNIVERSITAT

RATIOS BETWEEN MOBILE/IMMOBILE AND ACTIVE /INACTIVE BACTERIA

EG Deutsche Forschungsgemeinschaft

b)

UFZ HELMHOLTZ Centre for Environmental Resea

MICROBIAL ABUNDANCE: total biomass varies from 10¹¹ to 10¹² cells

- Highly abundant in groundwater wells strongly linked to surface inputs
- Relatively stable at deep wells with long travel times (H51, H52, H53)

UFZ) HELMHOLTZ Centre for Environmental Rese

TAKE-HOME MESSAGES

- Travel time-based approach untangles field-scale reaction transport processes.
- The results confirmed the **spatial variations of land use-dependent input.**
- The majority of microbes are mobile, which agrees with the observation at the Hainich site.
- Aeration zone is crucial for surface DOC degradation.
- Groundwater organic carbon mainly originates from subsurface release rather than surface sources.

Ipht Max Plance Max Plance for Bio

OUTLOOK

Analysis of main factors controlling concentrations at the Hainich CZE lacksquare

Relevance of surface signals for observations in the subsurface.

Extrapolation to the catchment scale •

> Assessment of the applicability of the used travel time-based approach Analysis of carbon and nitrogen turnover for different climatic projections

Leibniz Ipht 🔿

Leibniz Ipht 🔿

CONTACT: thanh-quynh.duong@ufz.de

Hall A | A.105 **OSPP** voting

Planck Institute or Biogeochemistry

Thank you

