Hydrological Significance of Input Sequence Lengths in LSTM-Based Streamflow Prediction
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Box plots of distribution of Streamflow NSE metric for different basins
Trained regional hyper-tuned MTS-LSTMs on 10 different random seeds

Introduction and Motivation Fig.3: Cumulative distribution function plots of KGE and

The primary objective was to investigate
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settings; one has input sequence length of 3 years and the other 1 year. Although, both
versions demonstrate high accuracy, regionally and locally; the one having 3 years of
input sequence length outperformed the other, regionally and in several places.

We utilized a multi-timescale LSTM We found that hyperparameters :

network (MTS-LSTM) (Gauch et al. related to the length of the input Our methodology, which involves simultaneous hyper-
2021) to predict hydrographs in flashy sequence significantly impact the tuning ot LSTMs, demonstrates high accuracy for .4 o0 ool analyses reveal
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(Beven, 2020).
This study emphasizes the hydrologically
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