

SEARCHING FOR A CONCENTRATION OF OLIVINE-RICH BODIES IN ASTEROID COLLISIONAL FAMILIES IN THE MAIN BELT

INTRODUCTION

The "missing mantle problem"

- Planetesimals **differentiation**: formation of a basaltic crust, an olivine-rich mantle, and an iron core. [1]

differentiated planetesimal

collisional asteroid family

- Observations: scarcity of olivine-rich material in the main belt.
- Olivine-rich asteroids are evenly distributed with **no statistically** significant concentration in any asteroid family. [2]

Dataset of **60 518 reflectance spectra in the visible** wavelength range ([374,1034] nm) of Solar System small bodies, released in the **Gaia DR3.** [3]

(36256) 1999 XT17 family

- ° mean albedo $p_V = 0.21$ ° 57 members
- ° located in the pristine zone of the main belt (2.825 2.955 au)
- ° 15 asteroids have a Gaia DR3 reflectance spectrum.

Literature:

- 36256 is an **A-type** from NIR spectroscopy [2]
- 25356, 40671, 76627 are **Ad-type** from MOVIS colours [5]
- 27565, 34902, 66676, 99004 are part of the **S-complex** from photometry [6,7,8]
- 58777, 201232, 254896 are **A-types** from photometry [6,7,8]
- 7 are **S-complex** asteroids from photometry [6,7,8]
- others: L, K, C, D, V or X from photometry [6,7,8]

Goal 💮

Determine if the 36256 family contains a concentration of olivine-rich bodies using Gaia DR3 spectral data.

Université Côte d'Azur, CNRS, Lagrange, Observatoire de la Côte d'Azur, Nice University of Leicester, School of Physics and Astronomy, Leicester, UK

Marjorie Galinier¹, M. Delbo^{1,2}, C. Avdellidou^{2,1}, L. Galluccio¹

D	p_V	Avg	Η	spectral
(km)		S/N		class
5.84	0.30	35.32	13.3	A, L
6.62	0.18	38.25	13.5	A, Sv
5.24	0.28	36.01	13.6	A, Sv
-	-	66.49	12.8	A, Sa
5.92	0.19	20.74	13.6	A, L
-	-	48.07	13.4	A, Sa
4.15	0.15	14.7	14.4	Sq, Sr
10.21	0.19	66.56	12.4	A, Sa
-	-	28.09	13.6	A, Sa
7.20	0.31	128.7	12.9	A, Sv
6.55	0.22	52.28	13.3	L, A
-	-	14.88	14.7	S, Sr
-	-	20.75	14.5	K, S
3.83	0.10	13.93	14.6	L, A
3.69	0.20	13.86	14.7	Sv, A

- ^o 2 confirmed A-types from NIR spectroscopy
- the S-complex
- CK6 meteorite LEW87009
- Shergottite ALHA77005
- Brachinites NWA4882 and ALH84025

Hypothesis:

- ° Some S-types are badly classified A-types

- confirm or rule-out the different scenarios.

marjorie.galinier@oca.eu

RESULTS

12 out of the 15 asteroids having a Gaia spectrum are classified as A-type as first or second best class.

° 2 confirmed A-types from Gaia DR3 + NIR MOVIS ° 7 asteroids with a SNR<21 : classification less reliable. Members of

[°] Best meteoritical analogue: **olivine-rich meteorites** - R-chondrites Rumuruti and LAP04840, R4 chondrite MIL07440

V-shape: 8 asteroids SNR>21, clustering outside the V-shape of Eos

° Some S-types are interlopers in the family, part of Eos fugitives [13] ° A-types family: breakup of a common olivine-rich parent body, once part of a differentiated body?

^o A-types + S-types family: parent body partially differentiated ?

- Among the 36 family members classified, **16 are potential A-types** (44.4 %). Secondary class : 30.5 % of potential S-complex - Best meteoritical analogues: olivine-rich meteorites. - Need **NIR observations** to study more objects of the family and