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Dynamical systems display a range of dynamical regimes depending on the values of parameters in the system. Here, we demonstrate how non-
parametric entropy estimation codes based on the Kraskov method can be applied to find regime transitions in the Lorenz 1963 system when
varying the values of the parameters. These information-theory-based methods are simpler and cheaper to apply than more traditional metrics from
dynamical systems. The non-parametric nature of the method allows for handling long time series without a prohibitive computational burden.

The values in the parameters of a dynamical system determine its
long-term evolution. When parameter values are changed, this
behaviour can be considerably altered, leading to a regime change. 

Figure 1: (adapted from Ott, 2008). A simplified bifurcation diagram
for the Lorenz 1963 system showing known regimes.  
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The Lorenz 1963 is an
archetypical simple (3 
variables) continuous-
time model with 3 
parameters. Varying
one of them can lead to
regular motion, 
transient chaos, and 
chaos. 

Analytic methods to study regime transitions can be limited. Techniques
like Finite Time Lyapunov Exponents study the evolution of
trajectories evolving from an initially tight set of points. The calculations
involved can be burdensome. 

We have used the Lorenz 1963 model to show that information-theory-
based metrics can be used to detect regime changes when varying a 
parameter.
The metrics can be applied with or without time lagging. In both
cases, we have shown distinct behaviours of the metrics for different
regimes. 
We have yet to study and decript the causality information of our
results. 

Information-theory-based metrics are based on the marginal and joint
distributions of a set of variables, and can readily detect relationships
amongst them. When including time lags between the variables, causal 
information can be deduced. 

Figure 2: Simple diagram showing the information-content metrics for a 
3-variable system. In this case two variables are contemporaneous (y and 
z), while one variable is one step ahead (x). 

Computing the metrics using their definitions is very expensive.
Thankfully, there are available codes like NPEET which use nearest
neighbor non-parametric estimators based on the Kraskov method. 

Figure 3: Computation of information-based metrics without time lags. 

We compute the entropies (for each variable), mutual information
(for each pair of variables), conditional mutual information (for each
conditioned pair), and interaction information (for the triplet of
variables). 

Figure 3 shows results without time lagging. The vertical lines separate
the known regimes. The entropy of the variables grows as the
parameter increases and is maximal in the chaotic regime. The
interaction information decreases steadily as the parameter
increases and is minimal (and negative) in the chaotic regime. The
mutual and conditional mutual information flip their relationship
when transient chaos initiates. They reach steady values in the
chaotic regime.

Figure 4: Computation of correlation (top row) and mutual information
(bottom row) for pairs of variables when including time lags. 

Figure 4 computes pairwise metrics with time lags introduced. There is an
abrupt change in the pairwise correlation (computed in the top-row
for comparison) and the mutual information (bottom row) just before
the beginning of intermitency. 

The advantage of using mutual information is clear with the maximum
values corresponding to the periods of the unstable lymit cycle. This
information is not detected by the correlation. 
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