

16/04/2024

Laura Rodríguez García ESA Research Fellow

Acceleration and Transport of Solar Energetic Particles in the Inner Heliosphere

Motivation

How do solar eruptions produce energetic particle radiation that fills the heliosphere?

Study the acceleration of solar energetic electrons sampling events <u>closer to the acceleration site</u>

Study the <u>evolution</u> of particle parameters <u>with</u> <u>distance</u> to the Sun

To study <u>new parameters</u> that could be related to particle acceleration processes

💳 📰 📰 💳 🛨 📲 🔚 🔚 🔚 📰 📲 🔚 🔤 🔤 🚱 🍉 📲 🚼 🖬 📰 📾 🔤 🔤 👘 🔸 The European space agency

Acceleration of solar energetic electrons sampling events closer to the acceleration site

Solar activity relations in energetic electron events measured by the MESSENGER mission

Rodríguez-García et al. (A&A, 2023b)

L. Rodríguez-García, L. A. Balmaceda, R. Gómez-Herrero, A. Kouloumvakos, N. Dresing, D. Lario, I. Zouganelis, A. Fedeli, F. Espinosa Lara, I. Cernuda, G. C. Ho, R. F. Wimmer–Schweingruber, and J. Rodríguez-Pacheco

Credit: https://ismaelcaracol.wordpress.com/

Pictures and screenshots are welcome

Link to the article

MESSENGER: solar energetic electrons observations .eesa

- □ Most of the rising, maximum, and early decay phase of solar cycle 24
- □ Heliocentric distance of MESSENGER: 0.31 to 0.47 au
- □ 61 solar energetic electron events (vertical spikes)
- □ High background of MESSENGER/EPS instrument-> only strong events
- □ Anti-Sun pointing of MESSENGER/EPS-> lower limit of peak electron intensities

In situ electron increases versus solar activity

👝 💿 🛌 📕 💥 🚍 🛨 🔤 🔤 🚈 🚔 🔶 THE EUROPEAN SPACE AGENCY

Parker spiral/3D CME & CME-driven shock

Relations: e⁻ peak intensity vs solar source parameters

Kelly correlation methods used Corrected for the

lower limit of peak intensity values measured by MESSENGER

Similar correlations (within uncertainties) between the SEE peak intensities and the flare or shock parameters

Relations: e⁻ peak intensity vs solar source parameters

The correlation of the peak electron intensity with the maximum speed of the 3D CMEdriven shock at the apex is stronger than that with the 3D CME speed at the apex

The 3D CME geometry plays a moderate role in the acceleration of particles

Evolution of particle parameters with distance to the Sun .eesa

Solar energetic electrons (SEE) measured by the MESSENGER and Solar Orbiter missions

Peak intensity and peak-intensity energy spectrum radial dependences: statistical analysis

Rodríguez-García et al. (A&A 2023a)

L. Rodríguez-García, R. Gómez-Herrero, N. Dresing, D. Lario, I. Zouganelis, L. A. Balmaceda, A. Kouloumvakos, A. Fedeli, F. Espinosa Lara, I. Cernuda, G. C. Ho, R. F. Wimmer–Schweingruber, and J. Rodríguez-Pacheco

Credit: https://ismaelcaracol.wordpress.com/

Pictures and screenshots are welcome

Nominal Parker spiral alignment with near 1 au

Radial dependence of the e⁻ peak intensities

 $\leftrightarrow 0$

🛨 🚽 💼 👛 🗰 🔶 THE EUROPEAN SPACE AGENCY

Radial dependence of the e⁻ peak intensities

→ THE EUROPEAN SPACE AGENCY

Radial dependence of the e⁻ energy spectrum

The electron spectral index found in the energy range around 200 keV (δ 200) of the backward-scattered population near 0.3 au is harder when compared to the both anti-sunward and backward propagating beam near 1 au.

<u>New parameters</u> for particle acceleration processes . eesa

What CME properties account for SEP events?

Example of remote-sensing coverage

Balmaceda et al, 2022 ApJ

Link to the article

Figure 5. 2011 June 7 event as seen by AIA (top) and EUVI-A (bottom). The sequence shows different stages in the CME early evolution and wave formation. (a) Rising filament. (b) Early CME (bubble) formation. (c) Lateral expansion of the CME, D, leading to the formation of the wave, W. (d) The separation of the wave (W; orange line) from the driver (D; purple line) is clearly observed. All frames are base-difference images. The yellow dashed lines in panels (a) and (d) indicate the direction for the radial and circular slits used to build the stackplots in Figure 6. An animation of the bottom panels of this figure is available. The animation includes the EUVI-A 195 Å image on the left and the corresponding base-difference image on the right. The animation sequence starts at 06:00:30 UT and ends at 06:38:00 UT. The time lapse between images is 2.5 minutes.

Parameters of CME & wave included in the study

Figure 1. Schematic representation of the 3D models for the flux rope (top) and the shock/wave (bottom) with the parameters of interest (see text for details). (a) Faceon view of the flux rope. (b) Edge-on view of the flux rope. (c) Ellipsoid model (adapted from Kwon et al. 2014). (d) Simplified 2D version of the shock/wave model.

*

Preliminary list of events under study

Ι.	AAGA

Event	Date	Location	CME v_{peak} [km s ⁻¹]			Shock v_{peak} [km s ⁻¹]			-
		Lat,Long	LE	WEO	WFO	Top	b		
1	12/12/2013	S29W45	1257	503	626	1279	734		
2	11/19/2013	S15W75	1250	255	500	1350	875		
3	06/21/2013	S20E72	2000	750	1100	2000	900		
4	05/22/2013	N17W76	1757	721	1161	1951	1339		CME
6	05/26/2012	N17W120	2385	642	1000	2621	1481		-LE
7	05/17/2012	N06W81	2583	1105	1578	2664	2117		
8	10/20/2011	N17W100	1009	343	424	1022	586		-VVE
10	09/22/2011	N20E70	1832	593	827	1851	886		-WF
11	08/09/2011	N21W70	1878	717	932	1937	1286		
12	08/08/2011	N18W62	2065	633	822	2095	1088		
13	08/04/2011	N24W36	2385	637	903	2405	1291		
14	03/07/2011	N10E20	960	272	355	974	553		-100
15	02/24/2011	N13E82	2019	314	826	2052	905		-b·l
16	01/28/2011	N18W88	725	280	379	1092	756		D. 10
17	12/31/2010	N14W55	459	462	457	531	548		
18	09/08/2010	N24W93	949	319	435	966	562		
19	08/18/2010	N12W100	1670	379	839	1669	883		
20	08/14/2010	N10W53	1275	277	457	1287	798		

Ξ:

(leading edge): radial expansion

EO (width edge-on): cross-section expansion

O (width face-on): lateral expansion

E-driven shock:

: radial expansion

ateral expansion

Example of spacecraft constellation

• esa

SEP event number 1

Near-relativistic electrons (70-100 keV)

Log(cme vweo peak)[km s

N= 17

N= 17

3.6

3.8

R= 0.67

3.4

4.0

R= 0.77

3.5

Relativistic electrons (1 MeV)

5 MeV protons

*

25 MeV protons

CME

radial

lateral

cross-section

__1h)

Log(best_pro_25MeV_[(cm² sr s MeV)⁻¹]

0

-1

-2

-3

-4

2.0

2

1

0

-1

-2

-3

2.2

2

1 0

-1 F

-3 -4

2.0

 $\label{eq:log} \begin{array}{l} \mbox{Log(best_pro_25MeV_1h)} \\ \mbox{[(cm^2 sr s MeV)^{-1}]} \end{array}$

 $-og(best_pro_25MeV_1h)$ [(cm² sr s MeV) ⁻¹]

[(cm² -2 2.5

++

++-

2.6

H+H

벆눠

2.4

2.4

2.2

4.0

3.8

50 MeV protons

-

Wave

radial

lateral

Log(best_pro_50MeV_1h) [($cm^2 sr s MeV$)⁻¹]

Log(best_pro_50MeV_1h) [(cm² sr s MeV) ⁻¹]

0

-1

-2

-3

2.0

0

-1

-2

-3

2.4

2.6

2.5

3.0

Log(shock_vpeak_le)[km s⁻¹]

HH4

N= 16

N= 16

3.6

3.8

R= 0.68

R_kelly= 0.54 ± 0.18

3.4

4.0

R= 0.62 kellv= 0.63± 0.16

3.5

2.8

3.0

Log(shock_vpeak_b)[km s⁻¹]

3.2

CME

0

*

Conclusions

Soth flare and shock-related processes may contribute to the acceleration of near relativistic electrons in large SEE events, in agreement with previous studies based on near 1 au data

- ✓ The maximum speed of the CME-driven shock is a better parameter to investigate particle-acceleration-related mechanisms than the average CME speed, as suggested by the stronger correlation with the SEE peak intensities
- ✓ There is a wide variability in the radial dependence of the electron peak intensity between ~0.3 au and ~1 au, but the peak intensities of the energetic electrons decrease with radial distance from the Sun in 27 out of 28 events. On average and within the uncertainties, we find a radial dependence consistent with R⁻³
- ✓ The electron spectral index found in the energy range around 200 keV (δ 200) of the backwardscattered population near 0.3 au is harder in 19 out of 20 (15 out of 18) events by a median factor of ~20% (~10%) when compared to the anti-sunward propagating beam (backwardscattered population) near 1 au.

Conclusions

Electrons and protons 5 MeV:

• Lateral expansion of the CME **more relevant** than the cross-section expansion

Protons 25 and 50 MeV:

- Shock speed and CME speed have **similar relevance**
- **Similar relevance** of CME and shock-lateral, cross-section- expansion speeds

■ 🔜 📲 〓〓 💳 🛶 📲 🏣 〓〓 🏭 📲 〓〓 〓 🚛 🚱 🛌 📲 〓 🖛 🔯 🍉 📲 🚼 📰 🖿 📰 📾 📾 🍁 🔹 → THE EUROPEAN SPACE AGENCY

Acceleration and Transport of Solar Energetic Particles in the Inner Heliosphere

laura.rodriguezgarcia@esa.int