

(EGU General Assembly 2024

Numerical dye tracer experiments in Bedford Basin in support of Ocean Alkalinity Enhancement research

Bin Wang¹, Arnaud Laurent¹, Qiantong Pei¹, Jinyu Sheng¹, Katja Fennel¹

¹Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Email: Bin.Wang@dal.ca

Motivation

CDR is necessary to achieve <u>net-zero emission</u> and stabilize the <u>global warming</u> within 1.5 °C

Motivation

- CDR is necessary to achieve <u>net-zero emission</u> and stabilize the <u>global warming</u> within 1.5 °C
- ✤ OAE is one of marine-based CDR approaches

Adapted from https://www.geomar.de/en/discover/ocean-for-climate-protection/carbon-uptake-in-the-ocean/ocean-alkalinization

Motivation

- CDR is necessary to achieve <u>net-zero emission</u> and stabilize the <u>global warming</u> <u>within 1.5 °C</u>
- ✤ OAE is one of marine-based CDR approaches
- ✤ OAE signals, e.g., increased TA, pH, air-sea flux of CO₂, are quickly diluted below the detectable levels

Challenge for observing OAE signals and MRV

Model description

Mean residence time

44.54

Mean residence time

Seasonal climatology of the MRT over 20 years (2003-2022)

OAE experiments

Impact of different seasons

Impact of different seasons

Detectable probability (unit: %)

(equivalent to 5 ton day⁻¹ of brucite)

power plant outfall

Add alkalinity directly

Add alkaline particles Sinking rate: 10 m day⁻¹ Dissolution: 0.5 day⁻¹

Impact of dissolution rate and sinking velocity power plant outfall 0 -10 -20 -30 Add alkalinity directly -40 **ROMS 2&3** release rate of P_1 : Jul-2005 -50 $2.0 \text{ mol TA s}^{-1}$ 10 20 0 -60 -70 Narrow Channel **Bedford Basin** 44.7 44.68 44.6 44.58 44.66 44.64 44.62 0 -10 -20 **Add alkaline particles** -30 Sinking rate: 10 m day⁻¹ -40 **ROMS 2&3 Dissolution: 0.5 day**⁻¹ release rate of $P_{4 4}$: -50 Jul-2005 $2.0 \text{ mol TA s}^{-1}$ 0 10 20 -60 -70 **Bedford Basin** Narrow Channel

44.7 44.68 44.66 44.64 44.62 44.6 44.58

Impact of model resolution

Summary

- The likelihood of detecting OAE signals is higher in July and April because of the longer residence time
- The measurability of OAE signals is sensitive to dissolution rate in winter and to sinking velocity in summer.
- When compared to ROMS23, ROMS2 underestimates the measurability because it overestimates the vertical mixing

Thank you!

Bin.Wang@dal.ca

ICONIQ Impact

Carbon to Sea Initiative

Supplementary slides

Shortest MRT

Longest MRT

