

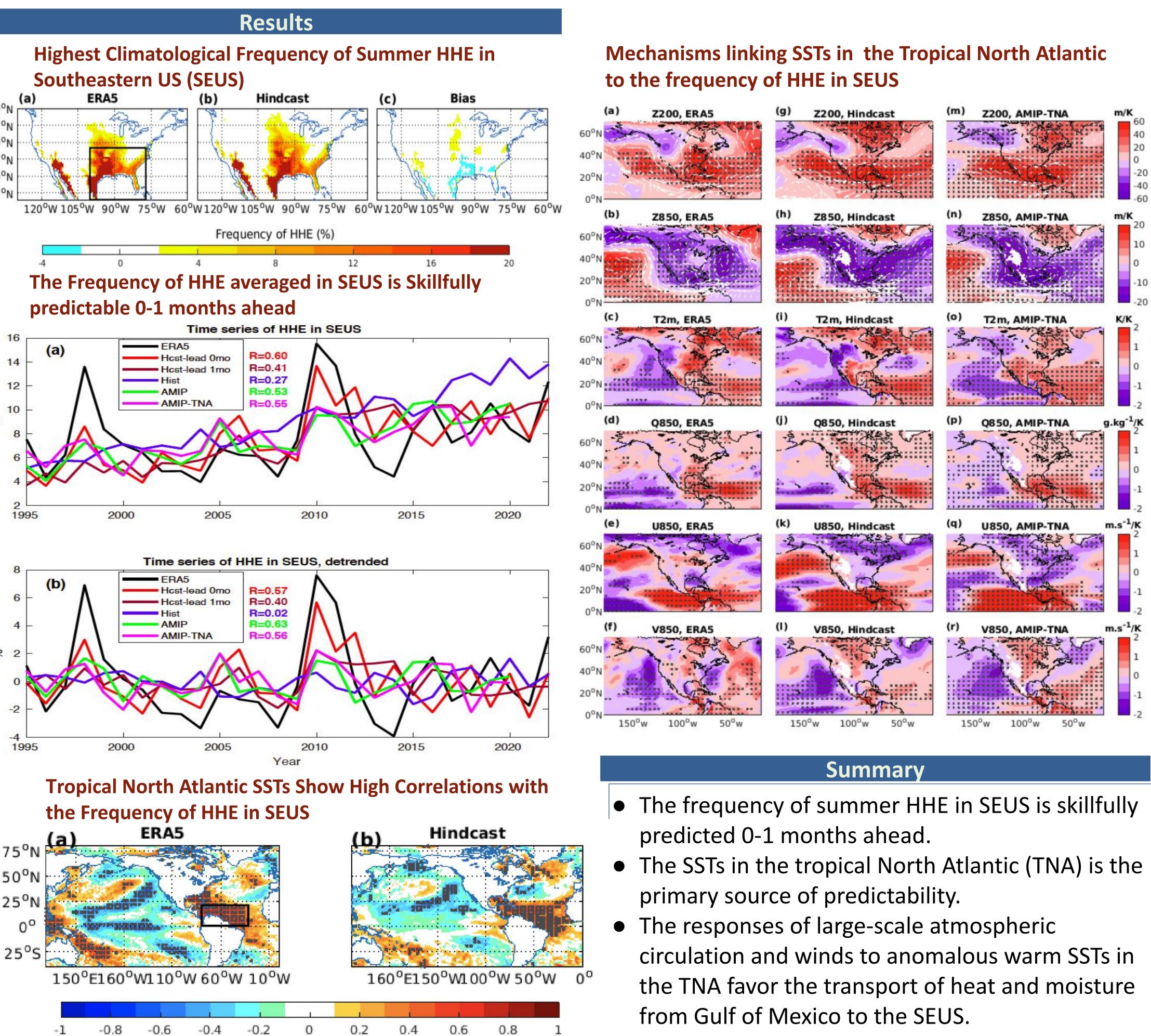
Seasonal Predictions of Summer Humid Heat extremes in the Southeastern United States **Driven by Sea Surface Temperatures**

Introduction

- Humid heat extreme (HHE) is a type of compound extreme event in which high temperature coincide with high humidity.
- Summertime HHE poses severe risks to human health.
- The occurrence of HHE has increased in recent decades and is projected to continue increasing according to climate simulations.
- There is a need for skillful prediction of HHE and for identifying the sources of predictability.

50°N	(
45°N	
40°N	
35 ⁰ N	
30 ⁰ N	-
25 ⁰ N	

Definition of Heat Index and HHE


- $HI = -42.379 + 2.04901523^{T} + 10.14333127^{RH} 10.14333127^{T}$.22475541*T*RH - .00683783*T*T -12 .05481717*RH*RH + .00122874*T*T*RH + 10 .00085282*T*RH*RH - .00000199*T*T*RH*RH where T is temperature, RH is relative humidity.
- A day with HI>105 °F is called an HHE.
- The frequency of HHE in Jun.-Aug. is then calculated.

Model and Data

 1995-2022 SPEAR hist SPEAR AMI a) forced with and sea ice of b) as a), but SST/sea ice of 0-23°N, 80-3 	EAR hindcasts during the period of (15 members) orical simulations (15 members) P-style simulations (15 members each) th prescribed sea surface temperature (SST) over global ocean basin. forced with a repeating cycle of climatological outsided of tropical North Atlantic (TNA, 15°W) for verification	%
Contact	Liwei Jia: Liwei.Jia@noaa.gov	

NUAA/GFDL 201 Forrestal Rd Princeton, NJ 08540 USA

Liwei Jia, Thomas L. Delworth, Xiaosong Yang, William Cooke, Nathaniel C. Johnson and co-authors Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration, Princeton, New Jersey, United States

