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Background

• Distributed Acoustic Sensing (DAS) has become a revolutionary observational technology.
• DAS, known for its high spatial resolution, environmental resilience, and ease of

deployment.
• DAS inherently captures strain (or strain rate), in contrast to seismic instruments which

record Ground Motion.
• Several physics-based methods have been proposed to convert DAS strain to ground

motion response (displacement, velocity, or acceleration).
• Efficient conversion of strain to ground motion using physics-based methods relies on

accurate estimation of phase velocity along the DAS cable which is challenging.
• To overcome this problem, we introduce a novel deep learning (DL) approach to convert

high-resolution Distributed Acoustic Sensing (DAS) strain measurements into ground
motion (GM) particle velocity.

LSTM model used to convert high-resolution DAS

strain to GM. The Predicted GM indicate

comparable results with physics based conversion

method in the frequency range 1 – 5 Hz.
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Figure 1: Location map for the Hawthorne earthquake and Brady Hot Springs (a) [2], DAS and geophones
Array geometry (b) [2], selected co-located geophones with DAS channels (c), and example of co-located
traces (d).

Figure 3: Training and validation Loss metric curves (a), a comparison between original and
predicted geophone traces (b), and the average amplitude spectrum for DAS (orange), original
(black) and predicted geophone using both physics (green) and DL (red) methods (c).

Study area

Training set Test set
Number of 

Layers
Learning Rate

Number of 
Epochs

Batch size

895 223 4 2.43e-05 5000 54

Results

Data analysis

Table 1:  The List of hyperparameters used in the training process.
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Extracting Co-located DAS-
Nodal data

Synchronize Data in time

Integrating DAS strain rate to 
strain

Filtering (1.0 – 5.0) & 
resampling to 200 Hz

Split data into 80/20 % for 
training

Nodal instrument response 
correction

Rotate Nods E & N comp. to 
DAS cable direction

Figure 2: Data preprocessing,
and training steps.
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Conclusion
• Earthquake data recorded by co-located DAS-geophones at Brady Hot springs

Geothermal Natural lab were used to train LSTM model.

• The model’s performance is evaluated using RMSE metric, demonstrating an

average values of 1.8 for training and 2.8 for testing, indicating the model's efficacy

in transforming DAS strain to particle velocity.
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