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Abstract 13 

Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming) 14 

contributes substantially to the uncertainty in future precipitation projections over tropical oceans. 15 

By applying a 2-mode model that dissects precipitation changes from sea surface temperature (SST) 16 

changes and those from SST gradient changes, we find that the relationship between relative 17 

precipitation (i.e., precipitation divided by the basin mean precipitation) and relative SST (i.e., 18 

SST minus the tropical mean SST) and that between relative precipitation and SST gradient remain 19 

virtually constant during climate change. This means that regional hydrological sensitivity can be 20 

constrained by the present-day SST-precipitation relationship. We report that climate models 21 

systematically underestimate precipitation sensitivity to local relative SST changes. However, such 22 

a bias has limited impact on tropical precipitation changes, which are primarily associated with 23 



SST gradient changes. The sensitivity of precipitation to SST gradient changes is well represented 24 

by the multi-model average. 25 

 26 

Key Points 27 

• Regional hydrological sensitivity is an important source of uncertainty in rainfall 28 

projections over tropical oceans. 29 

• Regional hydrological sensitivity can be constrained by components of rainfall-30 

temperature relationship that stay constant during warming. 31 

• Regional hydrological sensitivity is linked to surface temperature gradients and this link is 32 

well captured by the multi-model average. 33 

 34 

Plain Language Summary 35 

Understanding how precipitation will change over tropical oceans is important because these 36 

changes influence the atmospheric circulation, which in turn affects the global climate and weather 37 

patterns. Climate models disagree on their projections of precipitation changes over tropical oceans 38 

in part due to a lack of understanding on how precipitation should respond to a given amount of 39 

local surface warming. We find that the sensitivity of precipitation to future changes in local sea 40 

surface temperature (which is commonly referred to as regional hydrological sensitivity) largely 41 

depends on how precipitation varies with the local sea surface temperature in the present-day 42 

climate. This allows us to constrain the projected precipitation sensitivity to future warming based 43 

on the observed present-day precipitation-sea surface temperature relationship. We find that the 44 

sensitivity of precipitation to local warming primarily depends on how such warming affects the 45 



spatial gradient of surface temperature. This aspect of precipitation sensitivity is well represented 46 

by the multi-model average but differs substantially among individual climate models. 47 

 48 

1. Introduction 49 

Tropical precipitation is a main component of the global hydrological cycle. Both tropical 50 

land and oceanic precipitation changes have far-reaching implications on the global climate system 51 

via atmospheric teleconnections (e.g., Chen et al., 2020; Lu et al., 2023). The projection of future 52 

tropical precipitation is highly uncertain at regional scales (e.g., McSweeney & Jones, 2013). The 53 

uncertainty in regional precipitation over tropical oceans is often attributed to the uncertainty in 54 

sea surface temperature (SST) changes (Kent et al., 2015; Ma & Xie, 2013), because precipitation 55 

changes generally follow local SST changes (S.-P. Xie et al., 2010). But SST is only half of the 56 

equation. Chadwick (2016) showed that a considerable portion of the inter-model spread in tropical 57 

precipitation changes persist when the models are driven by the same SST changes (their Fig. 5, 58 

reproduced in Supplementary Figs. 1a, b). This suggests that the uncertainty in regional 59 

precipitation changes (δP) is not only associated with local SST changes (δSST), but likely 60 

precipitation sensitivity to local SST changes (δP/δSST) as well. However, regional hydrological 61 

sensitivity (which describes precipitation change per degree local surface temperature change) has 62 

not been thoroughly studied.  63 

On the other hand, there has been great interest surrounding the global and tropical mean 64 

hydrological sensitivity due to its substantial variance among climate models (DeAngelis et al., 65 

2015; Su et al., 2017; Watanabe et al., 2018; J. Zhang & Huang, 2023). The tropical mean 66 

hydrological sensitivity (often calculated as the percentage change in tropical mean precipitation 67 

per degree tropical mean surface warming) varies by roughly a factor of three among the Coupled 68 



Model Intercomparison Project (CMIP) models (He & Soden, 2015). Means to constrain the 69 

projected tropical mean hydrological sensitivity have been explored in recent studies (Ham et al., 70 

2018; Park et al., 2022). In comparison, regional hydrological sensitivity has received far less 71 

attention. However, because the broader impacts of tropical precipitation changes depend more on 72 

the regional distribution rather than the tropical mean of such changes (Lu et al., 2023), 73 

understanding regional hydrological sensitivity is important from both scientific and pragmatic 74 

points of view. 75 

While hydrological sensitivity to future warming has been underexplored, it is useful to 76 

review precipitation sensitivity to internal SST variations, where some progress has been made in 77 

recent years. He et al. (2018) found that the equations that determine the precipitation sensitivity 78 

to internal SST variability are the same as those governing the climatological mean SST-79 

precipitation relationship. This means that the response of precipitation per degree internal SST 80 

variation is the same as the variation in climatological precipitation per degree climatological SST 81 

variation (i.e., the slope of climatological precipitation in SST space, Figs. 1a, b). The implication 82 

of such a finding is that during internal climate variations, changes in SSTs result in a geographical 83 

reshuffling of convective and non-convective areas while the SST-precipitation relationship 84 

remains constant. In addition, because internal precipitation variability is driven by a multitude of 85 

factors, a major challenge in quantifying precipitation sensitivity to internal SST variability is to 86 

derive a physically meaningful relationship between precipitation anomalies and SST anomalies 87 

(Graham & Barnett, 1987; Lau et al., 1997; C. Zhang, 1993). The constancy in SST-precipitation 88 

relationship during internal climate variations allows us to constrain models’ precipitation 89 

sensitivity to internal SST anomalies by using the observed climatological SST-precipitation 90 



relationship. It was shown that climate models systematically underestimate precipitation 91 

sensitivity to internal and seasonal SST variations (Good et al., 2020). 92 

Although precipitation responds differently to internal and anthropogenic SST variations 93 

(e.g., Kramer & Soden, 2016), it has been reported that certain aspects of SST-precipitation 94 

relationship could remain constant during climate change. For example, Johnson & Xie (2010) 95 

examined the tropical mean SST-precipitation relationship and argued that the present-day and 96 

future relationship between precipitation and relative SST (SSTrel, defined as SST minus the 97 

tropical mean SST) is roughly the same (their Fig. 3a). But this appears to be an oversimplification 98 

when the three tropical basins are examined separately. As shown in Figure 1b, the Pacific 99 

precipitation is projected to shift markedly upwards in SSTrel space, while the other two basins 100 

exhibit moderate changes. The inter-basin differences in precipitation changes were recently 101 

attributed to the thermodynamic intensification of boundary-layer moisture transport (He et al., 102 

2024). However, much of the changes in precipitation in SSTrel space appear to be associated with 103 

changes in the basin mean precipitation. If we divide precipitation by the basin mean precipitation, 104 

which we refer to as relative precipitation (P*), P* appears largely constant within each basin (Fig. 105 

1d). Therefore, we hypothesize that the relationship between P* and SSTrel does not change under 106 

warming. If valid, this would allow us to derive the sensitivity of P* to local SSTrel changes based 107 

on the present-day SSTrel-P* slope. 108 

 We will test the hypothesis by deriving an SST-based model of present-day and future 109 

precipitation. This was often done by fitting precipitation to some nonlinear function of SST (e.g., 110 

Good et al., 2020; He et al., 2018; Neelin & Held, 1987). However, precipitation is affected by not 111 

only the amplitude but also the spatial gradient of SST (Back & Bretherton, 2009b; Lindzen & 112 

Nigam, 1987). The latter drives convection by inducing surface wind convergence (SC) and is a 113 



dominant driver of future precipitation changes in tropical oceans (Duffy et al., 2020). These 114 

processes can be quantified by a 2-mode model where precipitation is expressed as a function of 115 

SST and SC (as a proxy for the effect of SST gradients, Back & Bretherton, 2009a; Duffy et al., 116 

2020). Here, we will introduce an upgraded version of the 2-mode model (Section 3). We will then 117 

use it to quantify and constrain the sensitivity of P* to SSTrel changes (𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$% ) and SST 118 

gradient changes (𝜕𝑃
∗
𝜕𝑆𝐶% , Section 4). We will finally discuss the implications of 𝜕𝑃

∗
𝜕𝑆𝑆𝑇"#$%  119 

and 𝜕𝑃
∗
𝜕𝑆𝐶%  for regional hydrological sensitivity ( 𝜕𝑃 𝜕𝑆𝑆𝑇% ) and tropical precipitation 120 

projections (Section 5). 121 

 122 

2. Data 123 

 We quantify 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  over tropical (20oS-20oN) oceans in both 124 

observations and CMIP6 simulations. All datasets are interpolated onto a common 1o by 1o 125 

horizontal grid and a 19-level pressure coordinate before they are analyzed. We take monthly mean 126 

data but only analyze the seasonally varying climatological means. 127 

The observed SST data is a merged product based on the Hadley Centre SST dataset version 128 

1 and the National Oceanic and Atmospheric Administration optimum interpolation SST analysis 129 

version 2 (Hurrell et al., 2008). The data ranges from 1979 to 2021 and is archived at 1o resolution. 130 

To account for the uncertainty in individual precipitation observations, we average three widely 131 

used precipitation datasets: 1) the Global Precipitation Climatology Project (GPCP) data version 132 

2 from 1979 to 2021 at 2.5o resolution (Adler et al., 2003), 2) the Climate Prediction Center Merged 133 

Analysis of Precipitation (CMAP) data from 1979 to 2021 at 2.5o resolution (P. Xie & Arkin, 1997), 134 

and 3) the Tropical Rainfall Measuring Mission Project (TRMM) 3B43 data version 7 from 1998 135 



to 2019 at 0.25o resolution (Huffman et al., 2010). While the results presented in this paper are 136 

based on the average of the three precipitation observations, our conclusions do not change when 137 

individual precipitation datasets are used instead. 138 

 To quantify the impacts of SST amplitude and SST gradients on the observed precipitation 139 

(see Section 3), we use 3D atmospheric variables, including horizontal and vertical winds and dry 140 

static energy (calculated from air temperature and geopotential height). These variables are taken 141 

from reanalysis data during the period of 1979 to 2021. To minimize the effect of uncertainty 142 

within individual datasets, we average three widely used reanalysis datasets: 1) ERA5 (the 5th 143 

generation of the European Centre for Medium-Range Weather Forecasts reanalysis) on a 30km 144 

horizontal grid and 137 vertical levels (Hersbach et al., 2020), 2) NCEP/DOE-II (the National 145 

Center for Environmental Prediction and Department of Energy  Reanalysis II) at 2.5o resolution 146 

with 17 vertical levels (Kanamitsu et al., 2002), and 3) JRA-55 (the Japanese 55-year Reanalysis) 147 

at roughly 1o resolution with 37 vertical levels (KOBAYASHI et al., 2015). 148 

 We analyze two CMIP6 simulations (Eyring et al., 2016) by drawing the 43 models 149 

(Supplementary Table 1) that provide all necessary variables. The historical simulation is driven 150 

by historical estimates of radiative forcing and land use. We use the last 30 years (1985-2014) of 151 

the historical simulation to evaluate models against observations and to provide a baseline for 152 

future changes. The projected future climate is calculated based on the last 30 years (2071-2100) 153 

of the ssp585 simulation. ssp585 represents the upper boundary of the range of emission scenarios 154 

included in CMIP6, and its radiative forcing reaches 8.5 W/m² by 2100. 155 

 156 

3. 2-mode model 157 



 We apply a 2-mode model to dissect precipitation driven by SST amplitude and SST 158 

gradient. The 2-mode model was originally created by Back & Bretherton (2009a). “2-mode” 159 

refers to the fact that tropical precipitation is primarily associated with either a shallow or a deep 160 

vertical velocity profile (Figs. 1e, f). The shallow mode features maximum updraft in the boundary 161 

layer. The bottom-heavy structure is associated with strong boundary layer wind convergence 162 

which is driven by low-level pressure gradients that result from the gradients of the underlying 163 

SSTs (Back & Bretherton, 2009b; Lindzen & Nigam, 1987). The shallow mode is the main form 164 

of precipitation in the Eastern Pacific convergence zone and is closely related to SC. The deep 165 

mode peaks in the upper troposphere and can be attributed to atmospheric instability driven by a 166 

high amount of near surface moist static energy (Back & Bretherton, 2009a). It is therefore 167 

strongest in the warm pool regions but can also be affected by SST gradients, which can increase 168 

low-level moist static energy by generating moisture convergence (Duffy et al., 2020). Our 2-mode 169 

model largely follows the latest published version from Duffy et al. (2020), but with a few 170 

modifications that lead to substantial improvements. We will use the 2-mode model to simulate 171 

relative precipitation, which is the constrainable component of tropical precipitation changes (as 172 

we will later show). The main steps of the 2-mode model are outlined below. We direct the readers 173 

to Back & Bretherton (2009a) and Duffy et al. (2020) for details of the calculation, while pointing 174 

out the modifications made herein. 175 

Analysis of the atmospheric energy budget reveals that the spatial distribution of tropical 176 

precipitation is determined mainly by the column integrated vertical advection of dry static energy 177 

(Back & Bretherton, 2009a): 178 

𝐿𝑃∗ =
〈𝜔 %&

%'
〉
[𝑃]
. + 𝑟  (1) 179 



where L is the latent heat of condensation, P is precipitation, P* is relative precipitation (i.e., P 180 

divided by the basin mean precipitation, [P]), ω is pressure velocity, s is dry static energy, p is 181 

pressure, and < > is a pressure weighted vertical integral over an atmospheric column. The residual 182 

term (r) is the sum of horizontal advection of s, eddy transport of s, surface sensible heat flux, and 183 

the atmospheric radiative cooling (i.e., the difference between surface and top of the atmosphere 184 

radiation), all normalized by [P]. r has little spatial variation and is roughly equal to 1. We calculate 185 

r as the difference between 𝐿𝑃∗ and	
〈𝜔 %&

%'
〉
[𝑃]
. . 186 

 Equation 1 links precipitation to vertical velocity (ω); the latter is dissected into a deep 187 

mode (subscript d) and a shallow mode (subscript s): 188 

𝜔 ≈ 𝑜(𝛺( + 𝑜&𝛺&  (2) 189 

where Ω(p) describes the vertical profiles of each mode and o(x,y,t) describes the spatial and 190 

seasonal variation. The deep and shallow modes are determined based on a linear combination of 191 

the first two EOF modes of ω, while ensuring that the shallow mode has zero surface convergence 192 

and the deep mode is orthogonal to the shallow mode (Back & Bretherton, 2009a). While in 193 

previous 2-mode models, the dissection of the deep and shallow modes is done by using data of 194 

the entire tropical oceans, we do it separately for individual basins. This is motivated by the fact 195 

that the vertical profiles of 𝜔 differ substantially among basins. The Indian (Atlantic) basin has the 196 

largest (smallest) peaks in both deep and shallow modes and such differences are more pronounced 197 

in reanalysis than the CMIP6 multi-model mean (Figs. 1e, f). The reason for the inter-basin 198 

differences is unclear but is likely associated with inter-basin differences in SST, humidity, and 199 

land influences (He et al., 2024). 200 

Following previous 2-mode models, we also separate r into deep and shallow modes by 201 

linear multiple regression: 202 



𝑟 ≈ 𝑜(𝑅( + 𝑜&𝑅& + 𝑅) (3) 203 

where Rd, Rs, and R0 are constant regression coefficients. While it is unclear how r is physically 204 

linked to od and os, Equation 3 is calculated solely for the mathematical purpose that both terms 205 

on the rhs of Equation 1 are dissected into deep and shallow modes. Combining Equations 1-3 206 

yields the deep and shallow modes of P*: 𝐿𝑃∗ ≈ 𝐿𝑃(∗ + 𝐿𝑃&∗ + 𝑅), where 𝐿𝑃(∗ = 6
〈𝛺(

%&
%'
〉
[𝑃]
. +207 

𝑅(7𝑜( and 𝐿𝑃&∗ = 6
〈𝛺&

%&
%'
〉
[𝑃]
. + 𝑅&7𝑜&. Spatial patterns of the deep and shallow precipitation 208 

are shown in Supplementary Figure 2. 209 

 The shallow mode of P* is related to SST gradients by linear regression: 𝑃&∗ ≈ 𝐴&𝑆𝐶 + 𝐶&, 210 

where As and Cs are regression coefficients. 𝑆𝐶 = −∇(𝑢*+,-./ , 𝑣*+,-./), where u925hPa and v925hPa 211 

are 925 hPa horizontal winds. Alternatively, the effect of SST gradients can be estimated by the 212 

Laplacian of SST, but ∇2SST is substantially worse at capturing the spatial features of precipitation 213 

compared to SC (Back & Bretherton, 2009a; Duffy et al., 2020).  214 

The deep mode of P* is related to SST amplitude and SST gradients by multiple regression: 215 

𝑃(∗ ≈ 𝑏 × exp(𝑎 × 𝑆𝑆𝑇"#$) + 𝐴(𝑆𝐶 + 𝐶(, where a, b, Ad and Cd are regression coefficients. The 216 

coefficients are determined via a nonlinear least squares analysis based on the trust region method 217 

(Conn et al., 2000). Here, we make two modifications with respect to previous 2-mode models. 218 

First, previous models estimated coefficients (i.e., a, b, Ad, and As) by using data of the entire 219 

tropical oceans. This yielded spatially uniform parameters. But as shown in Figures 1c and 1d, the 220 

SSTrel-P* relationship varies substantially among basins, which indicates that the parameters may 221 

be basin dependent. The inter-basin differences in hydrological sensitivity were investigated in He 222 



et al. (2024) and were attributed to inter-basin differences in boundary-layer relative humidity. To 223 

account for the inter-basin variations, we estimate all coefficients separately for individual basins. 224 

Second, previous 2-mode models assumed that the SSTrel-driven Pd is zero below a certain 225 

convection threshold and grows linearly with SST above the convection threshold. This appears 226 

somewhat inconsistent with the actual SST-P relationship, which shows gradual and nonlinear 227 

precipitation growth throughout the SST space (Figs. 1a, b). Therefore, we use an exponential 228 

function (i.e., 𝑏 × exp(𝑎 × 𝑆𝑆𝑇"#$)) to represent the SSTrel-driven Pd. On the other hand, we are 229 

dealing with two SSTrel parameters (i.e., a and b). The two parameters both contribute positively 230 

to the SSTrel-driven Pd but are negatively correlated among models (Fig. 2a). To simplify the 231 

interpretation of the parameters, we set b constant while only allowing a to vary among models. 232 

Specifically, we estimate both a and b for the observations. But for CMIP6 models, b is prescribed 233 

for each basin as the observed values for both present-day and future simulations. The reason for 234 

making a (instead of b) the effective SSTrel parameter is twofold. First, making a constant across 235 

models instead would result in slightly greater root mean squared error (rmse) for the estimated 236 

precipitation, suggesting that the inter-model variation in the SSTrel-Pd relationship is more 237 

associated with a. Second, our choice is consistent with Good et al. (2020) who also used an 238 

exponential function to describe the SST-driven precipitation and proposed that precipitation 239 

sensitivity to SST should be represented by the coefficient within the exponent. Nevertheless, 240 

whether a or b is made the effective SSTrel parameter does not affect our conclusions. 241 

The above modifications result in substantial improvements in the 2-mode model (Figs. 242 

3a-d). The rmse for the estimated observed precipitation is 0.89 mm/day, compared to the rmse of 243 

2.30 mm/day in Back & Bretherton (2009a) and 2.08 mm/day in Duffy et al. (2020). The 244 

improvement is almost entirely due to the incorporation of the inter-basin differences in Ω profiles 245 



and sensitivity parameters. If the inter-basin variations are ignored, the rmse would increase to 246 

2.03 mm/day, which is similar to previous versions. 247 

The 2-mode model dissects P* into components driven by SST amplitude and SST 248 

gradients (SC): 249 

𝑃∗ ≈ 𝑃∗(𝑆𝑆𝑇) + 𝑃∗(𝑆𝐶) + 𝐶( + 𝐶& +
𝑅)

𝐿%   (4), 250 

where 𝑃∗(𝑆𝑆𝑇) = 𝑏 × exp(𝑎 × 𝑆𝑆𝑇"#$), and 𝑃∗(𝑆𝐶) = (𝐴( + 𝐴&)𝑆𝐶. As shown in Figures 3e-h, 251 

spatial variations in tropical precipitation are more associated with SC than SSTrel. Particularly in 252 

the Atlantic basin, the impact of SSTrel is very small. This is likely because the Atlantic basin is 253 

colder than the other two basins and the effect of SST amplitude only becomes significant at high 254 

SSTs (He et al., 2018). 255 

 The 2-mode model captures the CMIP6 multi-model mean P* changes reasonably well 256 

(Figs. 4a, b). The most notable inconsistencies appear in the Equatorial regions, which is also an 257 

issue for the previous 2-mode model (Fig. 2 of Duffy et al., 2020). The multi-model mean rmse 258 

for the estimated precipitation changes is brought down to 0.49 mm/day compared to the 0.62 259 

mm/day of Duffy et al. (2020). Consistent with Duffy et al. (2020), SC plays a substantially greater 260 

role in the projected tropical precipitation changes than SSTrel (Figs. 4c, d). Note that Duffy et al. 261 

(2020) attributed a portion of precipitation changes to the “wet-get-wetter” effect (their Fig. 2d), 262 

which is absent here because we only consider changes in P* rather than P. 263 

 264 

4. Regional precipitation sensitivity to anthropogenic SSTrel and SC changes 265 

 The present-day and future parameters are not only highly correlated among GCMs but are 266 

also similar in amplitude (Figs. 3b, c). Parameter a tends to be slightly lower at present-day, while 267 

parameter A (𝐴 = 𝐴( + 𝐴& ) is somewhat higher at present-day. Nevertheless, the differences 268 



between present-day and future parameters are substantially smaller than the parameters 269 

themselves. In Figure 4e, we estimate P* changes by the present-day parameters to calculate P* in 270 

both historical and ssp585 simulations. The resulting P* changes are very similar to those in Figure 271 

4b. This means that the present-day and future P* can be represented by the same 2-mode model 272 

with only differences in SSTrel and SC. This confirms our hypothesis that the SSTrel-P* and SC-P* 273 

relationships are essentially constant during climate change, while changes in P* are mainly 274 

associated with the geographic reshuffling of SSTrel and SC. To further confirm this point, we show 275 

that P* changes little in SSTrel-SC space (Supplementary Figure 3). 276 

Because the present-day and future parameters are roughly the same, we can obtain P* 277 

sensitivity to local SSTrel and SC changes by calculating the SSTrel and SC derivatives of Equation 278 

4: 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$% = 𝑎𝑏 × exp(𝑎 × 𝑆𝑆𝑇"#$), and 𝜕𝑃

∗
𝜕𝑆𝐶% = 𝐴. 279 

Because we hold parameter b constant across models, 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  is a function of a and 280 

SSTrel. By comparing a of GCMs and observations, we find that 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  is underestimated 281 

by most GCMs (Fig. 2b). This is consistent with Good et al. (2020), who reported systematic 282 

underestimations of precipitation sensitivity to internal and seasonal SST variations by CMIP 283 

models. In addition, there is substantial inter-model variation in a. The uncertainty in a has greater 284 

impacts on  𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  at higher SSTs. For example, the Pacific 𝜕𝑃

∗
𝜕𝑆𝑆𝑇"#$%  varies by a factor 285 

of 1.7 among GCMs for SSTrel=0 and a factor of 3.4 for SSTrel=2oC (equivalent to present-day 286 

SST of roughly 29 oC). 287 

The observational estimate of 𝜕𝑃
∗
𝜕𝑆𝐶%  is well represented by the CMIP6 multi-model 288 

mean (Fig. 2c). While there are no systematic biases in 𝜕𝑃
∗
𝜕𝑆𝐶% , there is considerable inter-model 289 



variance. 𝜕𝑃
∗
𝜕𝑆𝐶%  varies by a factor of 2.1, 2.2, and 2.8 for the Indian, Pacific, and Atlantic basin, 290 

respectively. 291 

How does biases and uncertainties in 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  affect the projection of 292 

tropical precipitation? Because the multi-model mean 𝜕𝑃
∗
𝜕𝑆𝐶%  biases are small and because most 293 

of the P* changes are associated with SC, the multi-model mean P* changes are not much affected 294 

by biases in 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$% . In Figure 4f, we estimate P* changes by using observational parameters 295 

and found very similar results to those estimated with GCMs’ historical parameters (Fig. 4e). To 296 

assess how inter-model variations in  𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  affect P* changes, we recalculate 297 

the multi-model mean P* changes in the 2-mode model by using parameters from GCMs with the 298 

lowest and highest  𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  (Figs. 4g-j). While the impact of inter-model 299 

variations in 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  appears moderate, that of 𝜕𝑃

∗
𝜕𝑆𝐶%  is substantially greater. The impact 300 

of 𝜕𝑃
∗
𝜕𝑆𝐶%  can also be appreciated by comparing P* changes in individual GCMs, as models with 301 

the highest 𝜕𝑃
∗
𝜕𝑆𝐶%  project substantially more spatially varying P* changes (Supplementary 302 

Figure 4). These results suggest that constraining 𝜕𝑃
∗
𝜕𝑆𝐶%  should help greatly to reduce the 303 

uncertainty in tropical precipitation changes. 304 

 305 

5. Discussions 306 

 𝜕𝑃∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  are quantitatively linked to regional hydrological sensitivity 307 

(i.e., 𝜕𝑃 𝜕𝑆𝑆𝑇% ). Knowing 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶% , one can easily obtain ∂P and then 308 

𝜕𝑃
𝜕𝑆𝑆𝑇% , if [P] and changes in surface conditions (i.e., ∂SST and ∂SC) are also known. 309 



(Uncertainties in [P] contribute little to the uncertainty in regional precipitation changes as 310 

demonstrated in Supplementary Figures 1c, d.) On the other hand, a separate discussion of 311 

𝜕𝑃∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  is helpful for the physical interpretation of regional hydrological 312 

sensitivity. The traditionally defined hydrological sensitivity interprets regional precipitation 313 

changes as responses to changes in local SST amplitude (i.e., 𝜕𝑃 = 𝜕𝑃
𝜕𝑆𝑆𝑇% × 𝜕𝑆𝑆𝑇). However, 314 

this can be misleading because regional precipitation changes over tropical oceans are primarily 315 

driven by ∂SC, which are associated with SST gradients rather than the amplitude of local SSTs. 316 

 In the 2-mode model, the SST-driven and SC-driven Pd is estimated by multiple nonlinear 317 

regression. This can be potentially problematic because SSTrel and SC are not entirely independent 318 

(with a spatial correlation of 0.6 in observations and reanalysis). Therefore, the effects of SST 319 

amplitude and SST gradients may not be cleanly separated by statistical methods. The 2-mode 320 

model partially addresses the problem by only allowing it to affect the attribution of the deep mode, 321 

while the shallow mode is attributed to SC only. 322 

However, our conclusion that regional hydrological sensitivity is mainly associated with 323 

𝜕𝑃∗
𝜕𝑆𝐶%  rather than 𝜕𝑃

∗
𝜕𝑆𝑆𝑇"#$%  is consistent with dynamical considerations. He et al. (2024) 324 

showed that tropical precipitation changes are determined by changes in boundary layer moist 325 

static energy, which are a function of ∂SST and changes in boundary layer relative humidity (∂RH0). 326 

Therefore, regional hydrological sensitivity (𝜕𝑃 𝜕𝑆𝑆𝑇% ) is primarily set by ∂RH0; the latter results 327 

from changes in boundary layer moisture transport driven by ∂SC (Supplementary Fig. 5, modified 328 

from He et al. 2024). 329 

We derive constraints on 𝜕𝑃
∗
𝜕𝑆𝑆𝑇"#$%  and 𝜕𝑃

∗
𝜕𝑆𝐶%  based on the finding that the 330 

relationship between P* and SSTrel and that between P* and SST gradients remain approximately 331 



the same in a warm climate. This means that changes in SST geographically reshuffles P*, while 332 

the sensitivity of P* to SSTrel and SST gradient changes is determined by the climatological SST-333 

precipitation relationship of each basin. Therefore, efforts to constrain regional hydrological 334 

sensitivity should focus on improving models’ present-day SST-precipitation and SC-precipitation 335 

relationships. 336 

 337 
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 474 

 475 

 476 

Figure 1. a-b) Basin precipitation averaged for 0.1 SSTrel bins from observations (a) and CMIP6 477 

multi-model mean historical and ssp585 simulations (b). SSTrel bins that account for less than 0.5% 478 



of the basin area are shown in semitransparent colors. c-d) Same as a-b) but for relative 479 

precipitation. e-f) Vertical profiles of deep and shallow pressure velocity profiles from reanalysis 480 

(e) and CMIP6 multi-model mean historical and ssp585 simulations (f). 481 

 482 

 483 

Figure 2. Relationships between present-day a and b (a), present-day and future a (b), and present-484 

day and future A (c). Individual GCMs are represented by the small dots, and the vertical lines in 485 

(b) and (c) represent the multi-model mean. Inter-model correlation coefficients are shown by texts. 486 

Observations are represented by the large dots in (a) vertical lines in (b) and (c) in lighter colors. 487 

The 95% uncertainty range is represented by the crosses for the individual GCMs in all panels and 488 

observations in (a) and is represented by the semitransparent shading for the observations in (b) 489 

and (c). 490 

 491 



 492 

Figure 3. Present-day precipitation (a-b), estimated precipitation by the 2-mode model (c-d), and 493 

SST-driven and SC-driven precipitation (e-h) from the observations (left) and the CMIP6 multi-494 

model mean (right). The 2-mode model estimates P* and P is obtained by multiplying P* by the 495 

observed or GCMs’ [P]. In (e-h), the basin mean P(SST) and P(SC) are removed in order to 496 

emphasize their spatial variations. 497 

 498 

 499 



Figure 4. a-b) CMIP6 multi-model mean P* changes from GCMs (a) and the 2-mode model (b). 500 

c-d) Multi-model mean P* changes due to changes in SST (c) and SC (d). e-f) Multi-model mean 501 

P* changes from the 2-mode model by using GCMs’ historical parameters (e) and observational 502 

parameters (f). g-h) Same as (b) except replacing parameter a of all GCMs with those from GCMs 503 

with the lowest a (g) and highest a (h). i-j) Same as (g-h) except for parameter A.  504 


