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ABSTRACT
Joint inversion of multitype datasets is an effective approach for high-precision subsurface
imaging. We present a new deep learning-based method to jointly invert Rayleigh wave
phase velocity and ellipticity into shear-wave velocity of the crust and uppermost mantle.
Amultimodal deep neural network (termed JointNet) is designed to analyze these two inde-
pendent physical parameters and generate outputs, including velocity and layer thicknesses.
JointNet is trained using random 1Dmodels and corresponding synthetic phase velocity and
ellipticity, resulting in a low cost for the training dataset. Evaluation using synthetic and
observed data shows that JointNet produces highly comparable results compared to those
fromaMarkov chainMonte Carlo-basedmethod and significantly improves inversion speed.
Training using synthetic data ensures its generalized application in various regions with dif-
ferent velocity structures. Moreover, JointNet can be easily extended to include additional
datatypes and act as a joint inversion framework to further improve imaging resolution.

KEY POINTS
• A novel multimodal network capable of jointly inverting

Rayleigh wave dispersion and ellipticity into VS.
• It requires less prior knowledge and is significantly faster

compared to traditional nonlinear techniques.

• It can be easily extended to include more input types and
serve as a framework for joint inversion.

INTRODUCTION
Surface-wave tomography is a classical method for studying the
crustal and upper mantle structure of the Earth (Press, 1956;
Forsyth et al., 1998; Shapiro and Campillo, 2004; Huang et al.,
2009). The surface-wave velocity at different periods is sensitive
to shear-wave velocity (VS) at different depths, so the 1D VS

model of the crust and upper mantle can be inverted using
observed surface-wave velocity dispersions. However, due to
the limited period range of high-quality dispersion, especially
at short periods, in regional imaging studies, constraints on
the shallow crust are limited (Lin et al., 2012).

To achieve more precise constraints on both shallow and
deep crustal structures, the joint inversion of Rayleigh wave
dispersion and ellipticity (also known as the ZH ratio) has been
widely applied for fine crustal structure imaging (Lin et al., 2012;
Li et al., 2016; Huang et al., 2021). The ZH ratio at 10–24 s peri-
ods has a high sensitivity toVS at shallow depths (<5 km), thus it
can form a good complement to the dispersion to obtain more

detailed information about the crustal structure by joint inver-
sion. However, traditional joint inversion methods have their
limitations. The linear methods are fast, but require optimal
regularization and an appropriate initial model. The nonlinear
methods based on global optimization algorithms can avoid the
heavy dependence on starting models (Bodin et al., 2012;
Afonso et al., 2013; Shen et al., 2013; Guo et al., 2015; Zhang
et al., 2020). However, they are usually time consuming and
may be difficult to converge on due to incomplete sampling.

Deep neural network (DNN) has undergone rapid develop-
ment recently and has been widely applied in geophysical
research. DNN has been applied to solve different problems,
including event detection (Perol et al., 2018; Tous et al.,
2020), phase picking (Ross et al., 2018; Yu et al., 2018; Wang
et al., 2019), surface-wave dispersion picking (Dai et al., 2021;
Wang et al., 2021; Yang et al., 2022), and model inversion
(Devilee et al., 1999; Meier et al., 2007; Hu et al., 2020; Cai
et al., 2022; Luo et al., 2022). To some extent, the DNNs can
provide alternative approaches to traditional processing with
human participation, such as manual picking of seismic phases,
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earthquake classification, setting initial models and inversion
parameters, and so on, and are usually efficient for data-driven
seismological studies.

The DNN-based methods have been used for surface-wave
dispersion inversion (Hu et al., 2020; Cai et al., 2022; Luo
et al., 2022). However, most of them are based on surface-wave
dispersion only. The joint inversion framework to fully utilize
multicomponent surface-wave characters is still rare. The inclu-
sion of the ZH ratio in the joint inversion can improve the imag-
ing resolution of the shallow crust. Moreover, the flexibility and
generalization of these DNNs need improvement. Many existing
networks are based on convolutional neural networks (CNN)
adopted from computer vision models. For instance, Hu et al.
(2020) transformed the dispersion curve into an image format
as input, which may result in data precision reduction when
converting the data to images. In addition, most networks
have strict requirements for the input data format. The input
dispersions are required to have the same period range and sam-
pling interval as the training data (Cai et al., 2022; Luo et al.,
2022). However, in reality, the period ranges and sampling
intervals of the dispersion data can vary between different
studies, and retraining the network is required, limiting the
generalized application of the models. To address this concern,
Wang et al. (2023) proposed a random sampling technique for
the dispersion period. Nevertheless, the period range of the
input dispersion is still fixed. A DNN-based approach with
fewer input requirements and generalized model sampling will
help to apply the trained model to various regions.

In this study, we design a multimodal DNN model, named
JointNet, to jointly invert Rayleigh wave phase velocity and
ZH ratio into a 1D VS model, and delineate the thicknesses
of sedimentary and crustal layers. The DNN model is trained
using a large quantity of random 1D models based on the
global CRUST1.0 model (Laske et al., 2013). The trained model
can capsule the nonlinear relationship between the VS model
and the phase velocity and ZH ratio. The model performance
is validated using synthetic data and observed phase velocity
and ZH ratio obtained from North China. The comparison
with 1D models inverted using the Markov chain Monte
Carlo (McMC)-based method suggests that the trained
model can produce competitive results with high efficiency.

Furthermore, it can be extended to include more input types
as a joint inversion framework.

DATA
Training data
The train data are purely synthetic, and the dispersion and
ellipticity are calculated based on a large number of 1D velocity
models in a reasonable model space. These 1D models are para-
meterized using the strategy of Huang et al. (2023). Specifically,
14 parameters are used to parameterize a 1D model (Table 1),
including the sedimentary thickness, the VS at the upper and
lower boundaries of the sedimentary layer, the crustal thickness,
five B-splines representing the VS in the crust, and likewise five
B-splines for the upper mantle. Based on the B-splines, the crust
and upper mantle are interpolated into 20 layers, respectively.
Using B-splines to represent VS can help parameterize the
1D velocity model with fewer parameters, thereby reducing
computational costs. Moreover, using B-splines helps to obtain
a smoother model, which can prevent the occurrence of unrea-
sonable models with large velocity jumps. On the flip side, it
may smooth out velocity–discontinuity interfaces within the
crust and upper mantle, resulting in the loss of some detailed
information on these discontinuities. Nevertheless, because the
sedimentary layer, crust, and upper mantle are interpolated
separately, the major discontinuities at the bottom of the
sedimentary layer and the Moho interface are not smoothed.
As demonstrated by Lin et al. (2012), Rayleigh wave phase
velocity and ellipticity can help to constrain P-wave velocity
and density. However, they also discovered a strong trade-off
between density and the VP=VS ratio, thus suggesting that it
could be reduced by employing empirical relationships.
Because of the relatively lower sensitivity of the Rayleigh wave
phase velocity and ellipticity to P-wave velocity and density,
the VP and density in the sedimentary layer and the crystalline
crust are scaled from the VS using the relationship of Brocher
(2005) in this study. Similarly, we employ the relationship of
Birch (1961) to obtain the VP and density in the upper mantle.
This might lead to some deviation between the model and the
real situation, but it should be acceptable considering the lower
sensitivity of Rayleigh wave phase velocity and ellipticity to
P-wave velocity and density.

TABLE 1
Model Parameterization and Perturbation Ranges of the Model Parameters

Model Layers Model Parameters Reference Range
Number
of Parameters

Number
of Sublayers

Sediment Sediment thickness (km) 0–10
VS at the top of the sediment layer (km/s) CRUST1.0 0–3.0 3 8
VS at the bottom of the sediment layer (km/s) CRUST1.0 0–3.0

Crust Crystalline crustal thickness (km) 20–80 6 20
5 B-spline coefficients for the crystalline crust (km/s) CRUST1.0 3.1–4.4

Upper mantle 5 B-spline coefficients for the upper mantle (km/s) CRUST1.0 4.0–5.4 5 20
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To cover as many potential 1D models as possible for
generalization, we randomly generate models in quite large
model space. To represent a realistic Earth structure, the
models are perturbated based on the CRUST1.0 model
(Laske et al., 2013). Here, we did not directly use the 1D mod-
els from CRUST1.0, mainly because the number of models
from CRUST1.0 is limited, which may cause overfitting dur-
ing training. During the training process, random samples are
generated at each step, which helps to prevent overfitting. The
perturbation ranges of the model parameters are shown in
Table 1. To add more physical constraints, we additionally
apply several prior conditions to the randomly generated
models: (1) VS increases linearly with depth in the sedimen-
tary layer; (2) VS at the top of the upper mantle should be
larger than that at the bottom of the crust. Once each 1D

model is randomly generated
within the defined model
space, we calculate the syn-
thetic Rayleigh wave phase
velocity dispersion of 6–40 s
period and ellipticity (ZH
ratio) of 10–24 s period using
the Computer Programs in
Seismology software package
(Herrmann, 2013). Finally,
these 1D models and the cor-
responding synthetic Rayleigh
wave phase velocity disper-
sions and ellipticities are used
as training datasets.

Observed data
We collect the observed
Rayleigh wave phase velocity
dispersions and ZH ratios for
306 stations of the ChinArray
Phase III deployed in North
China (Huang et al., 2021) to
evaluate the performance of
our trained DNN model. For
each station, the 6–40 s period
Rayleigh wave phase velocity
dispersion is derived from
ambient noise tomography,
and the 10–24 s period ZH
ratio is obtained from ambient
noise cross-correlations and
teleseismic earthquake records.
Then, the dispersions and ZH
ratios are used to invert the
crustal shear-wave velocity
models with a McMC-based
inversion method. The detailed

procedures can be found in Huang et al. (2021). In this study,
these observed dispersions and ZH ratios serve as inputs for
JointNet. The model outputs are jointly inverted 1D models
for all stations. The model reliability is evaluated by comparing
the model outputs with those jointly inverted using a McMC-
based method (Huang et al., 2021) using the same observed
dispersions and ZH ratios.

METHODOLOGY
DNN architecture
Inversion methods based on Bayesian theory typically maxi-
mize the posterior probability of an inversion problem:

P � p�mjd� � p�m�p�djm�
Z

, �1�
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Figure 1. Structure of JointNet. The bottom two panels represent the input phase velocity curve and ZH ratio curve.
v � �v1,v2,…,vT1� stands for the phase velocities at different periods, and r � �r1,…,rT2� stands for different ZH
ratios at different periods. They are fed to two transformer layers for extracting corresponding features c and f,
respectively. Then, the concatenation of c and f are converted to 1D model using a linear layer.
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in which m is the model, d is the input data, p(m) is the prior
probability of m, p�djm� is the likelihood or forward calcula-
tion, and Z represents the distribution of the input data
(Z = p(d)). The McMC-based methods iterate to adjust the
parameter m and find the posterior probability distribution.
However, the prior distribution p(m), or regularization of
m, needs to be manually determined. In contrast, the inversion
process based on DNN has the advantage of directly fitting the
maximum value of the posterior probability. This approach
eliminates the need to manually set regularization and avoids
the problem of getting trapped in local minima by removing
the iterative process.

In this work, we develop a novel inversion approach based
on the transformer model (Vaswani et al., 2017), termed
JointNet, to directly invert Rayleigh wave phase velocity and
ZH ratio for an isotropic 1D shear-wave velocity model.
The architecture of JointNet is shown in Figure 1.

As shown in Figure 1, the phase velocity and ZH ratio are
fed to the network separately. Here, v � �v1,v2,…,vT1� stands
for the phase velocities at different periods, and r � �r1,…,rT2�
stands for different ZH ratios at different periods. v and r are
fed to different transformer layers and get c1,…,cT1 and
f 1,…,f T2 as features. As c and f contain the global information
of phase velocity and ZH ratio, we can use g � concat�c,f �, the
concatenation of c and f, to perform inversion. A linear layer is
then constructed to obtain a 1D velocity model from the con-
catenated input g.

We use the weighted mean
absolute error function as the
loss function of the DNN:

Loss� 1
N

XN

i

wijvpi − vdi j

�
X2

j∈fmoho,sedg
wjjhpj −hdj j, �2�

in which N represents the

number of layers. vpi and vdi
represent the predicted and
input velocity of the ith layer,

respectively. hpk and hdk
represent the predicted and
input thickness of the sedimen-
tary and crustal layers. w repre-
sents the corresponding weight
coefficient.

Training
The JointNet is trained using
randomly generated 1D mod-
els, along with forward-calcu-
lated dispersion and ZH ratio

data. There are virtually an infinite number of samples available
for both training and testing purposes. This extensive dataset
covers all potential solutions so that the trained model can
be applied to various regions. Furthermore, the training samples
can be considered as the prior information for the Bayes func-
tion, and the inversion results will fall within the range of the
training samples. The output of JointNet will not exceed the
scope of the potential solutions during training. Thus, the pre-
viously mentioned parametrizations ensure that we can obtain
reasonable structures.

During the training of JointNet, the program randomly gen-
erated 32 samples for each batch of data. The learning rate is
set to 1 × 10−4. Because the training samples are completely
randomly generated, there is no risk of overfitting, and the
weight decay (l2 regularization) is set to 0. We trained the
model for 100,000 steps, which is equivalent to approximately
3.2 million training samples until the loss function converged
(Fig. 2). Here, we constructed a testing dataset to test the accu-
racy of inversion and stopped iteration when the accuracy of
the testing dataset became stable. The instability of the loss
function comes from two aspects. First, during the training
process, we add random noise with a normal distribution
to the dispersion and ZH ratio. It can not only improve the
generalization ability of the network, but it can also cause oscil-
lations in the loss function. Second, due to the multisolution
problem of the inversion problem, small errors in the input
data can lead to changes in the output model, which can cause

Figure 2. Loss curve in training.

630 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 114 Number 2 April 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/2/627/6338877/bssa-2023199.1.pdf
by Geophysical Exploration Center China Earthquake Administration user
on 08 April 2024



the loss function to oscillate as well. In this study, the training
process was performed using a single NVIDIA A100 GPU. The
time for a single iteration was 23.6 ms, and the time for 100,000
iterations was 2364 s. The well-trained DNN model is then
applied to synthetic and observed dispersions and ZH ratios
to obtain VS profiles for performance evaluation.

PERFORMANCE EVALUATION OF JOINTNET
We evaluate the inversion performance of JointNet in view of
both 1D VS profiles and horizontal slices of the 3D VS models.
This evaluation is conducted using both the synthetic data and
the observed data obtained from North China.

Comparisons for 1D VS profiles
First, we use the synthetic Rayleigh wave phase velocity and ZH
ratio calculated from a subset of the randomly generated 1D
model to feed JointNet and obtain the inversion results. The

misfit between the generated
models and the inverted mod-
els is calculated to evaluate the
differences.

Figure 3 shows a comparison
between the inverted 1D mod-
els obtained using JointNet
and the input models, as well
as the data fitting. Inmost cases,
the inverted models closely
resemble the input models,
and the data fitting is good,
demonstrating the robustness
of the DNN-based method. It
is worth observing that there
may be slight deviations
observed at the depths in which
velocity varies sharply.
However, during the generation
of the training models, the bot-
tom interface of the sedimen-
tary layer and the Moho
interface were not smoothed.
As shown in Figure 4, the phase
velocity and ZH ratio for a spe-
cific period are sensitive to the
VS within a certain depth range,
thereby reducing the resolution
of velocity–discontinuity inter-
faces. Thus, we attribute these
slight deviations to the lower
sensitivity of phase velocity
and the ZH ratio to the velocity
discontinuities of the models.
However, the velocity estimates
between the interfaces generally

exhibit high accuracy, proving that the DNN model can effec-
tively approximate the nonlinear mapping between the surface-
wave datasets and the VS model.

The histograms of misfits for VS at different depth ranges
and the layer thicknesses are presented in Figure 5. Because the
thicknesses of the sedimentary and crustal layers are indepen-
dent inversion parameters added to the loss function (equa-
tion 2), the neural network output includes the thicknesses
of the sedimentary and crustal layers. The misfit values exhibit
a normal distribution with a mean centered around zero, which
indicates the effectiveness and reliability of JointNet. Apart
from the relatively larger errors in crustal thickness, the sedi-
ment layer thickness and shear-wave velocities at different
depths have been accurately recovered. The large errors in
the crustal thickness are mainly caused by some models with
insignificant velocity contrasts across the Moho. The overall
error in the crustal thickness obtained from JointNet is

(a)

(g) (h)

(i)

(j) (k)

(l)

(b) (d) (e)

(f)(c)

Figure 3. (a,d,g,j) Examples of the inverted 1D VS models from JointNet compared with the true models. The blue
and red solid lines represent the true and inverted models using JointNet, respectively. (b,e,h,k) The blue and red
solid lines represent the input and calculated ZH ratio from the inverted models, respectively. (c,f,i,l) The same as
panels (b, e, h, and k) but for phase velocity dispersion.
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relatively large. To improve its accuracy, additional data, such
as the receiver function, could be added to future research.

To further evaluate the effectiveness of this approach, we
compared it with a linear inversion method and an McMC
approach. The linear inversion method is computationally effi-
cient but heavily relies on the accuracy of the initial model.
Inversion methods based on the McMC algorithm are known
for their robustness against initial model selection and
their ability to avoid local minima. Therefore, we compare
JointNet’s results with those from a linear method (Zhang
and Yao, 2017) and a McMC-based method (Li et al., 2016;
Huang et al., 2021). Through testing with synthetic data, we
found that the accuracy of the inverted results obtained by
the linear method is lower than that of JointNet (Fig. 6).
This may be related to the selection of the initial model
and/or the inversion parameters. Because the accuracy of
the results obtained by the McMC-based method is compa-
rable to that of JointNet, we only conduct a systematic com-
parative analysis between JointNet and the McMC-based
method.

Figure 7 shows the 1D VS

models inverted using JointNet
and the McMC-based method,
and the corresponding calcu-
lated phase velocity and ZH
ratio, respectively. The inputs
are both synthetic dispersion
and ellipticity. These models
exhibit striking similarity and
are in close agreement with
the input VS models. The true
models and the JointNet
inverted models are generally
included in the high probability
range of the results from the
McMC-based method. Because
the forward calculations fit very
well with the input values for
phase velocity and ZH ratio,
the relatively larger VS differ-
ence around the Moho interface
between the true models and
the inverted models can be
attributed to the inherent non-
uniqueness of the inversion
problem. This applies to both
JointNet and the McMC-based
method. The joint inversion of
dispersion and ZH ratio effec-
tively helps to recover the veloc-
ity structures in both shallow
and deep layers for both the
methods. For a detailed com-

parison, we calculate the misfits between the VS models inverted
by these two methods and the true models, as well as the misfits
between the forward calculations and the input values for phase
velocity and ZH ratio. These results are presented in Figure 8.

In both cases, the misfits all follow a normal distribution
centered around 0 km/s. Larger misfits are observed at depths
of 0–5 km for both the methods, which is likely related to the
velocity jump between the sediments and crystalline crust.
These results indicate that JointNet can achieve inversion accu-
racy comparable to the conventional McMC-based method to
a significant extent. The misfits of phase velocity and ZH ratio
for JointNet are slightly larger than the McMC-based method.
This is because the McMC-based method iteratively inverts the
VS model by fitting the input data, whereas JointNet directly
fits the VS model. Because the inverted models have similar
accuracy, we consider this small difference to be acceptable.

Similarly, we also evaluated the performance of JointNet in
practical applications using observed data. Huang et al. (2021)
employed a DRAM-McMC inversion method to obtain 1D VS

models beneath 306 stations deployed in North China by

(dc/dVS) (dz/dVS)

(a) (b)

Figure 4. (a) Rayleigh wave phase velocity depth sensitivity kernels at 6–40 s related to VS. (b) Rayleigh wave ZH
ratio depth sensitivity kernels at 10–24 s related to VS.
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jointly inverting the Rayleigh
wave phase velocity and ZH
ratio data. We feed JointNet
with these observed datasets
and compare the output with
those from the McMC-based
method. The comparison of
the inverted 1D models and
the data fitting is shown in
Figure 9. The results exhibit a
high level of consistency
between JointNet and the
McMC-based method, and
the data fitting of both the
methods is quite good. This
indicates that JointNet is
capable of obtaining reliable
inversion results for actual
observed data as well. Here,
clearer Moho interfaces can
be observed in the models
obtained by the McMC-based
method, because the crustal
thickness from the previous
study is input as an initial value
during the inversion (Huang
et al., 2021).

(a) (b) (c)

(d) (e) (f)

Figure 5. Distribution of the misfits between the inverted 1D models and the corresponding input models.
(a,b,d,e) Distribution of the misfits of VS at different depth ranges. (c,f) Distribution of the misfits of sedimen-
tary and crustal thicknesses. The depth range or thickness type as well as the corresponding mean and standard
deviation are annotated in the top-left corner of each panel.

(a) (b)

(e) (f)

(c) (d)

(g) (h)

Figure 6. (a,b,e,f) Distribution of the misfits between the inverted models and
the true models for the linear method. (c,d,g,h) The same as panels

(a–d) but for JointNet.
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Comparisons for horizontal VS slices
In addition, we compare the horizontal VS slices obtained from
the observed data to validate whether JointNet can benefit
from the joint usage of the two types of data and produce
results spatially consistent with the McMC-based method.
The horizontal VS slices at 5, 10, 20, and 50 km depths
obtained from JointNet and the McMC-based method (Huang
et al., 2021) are shown in Figure 10. The inclusion of ZH ratio
data enhances the resolution of shallow structures, which is
evident in the results of both methods. At 5 km depth, the

(a) (d) (e)

(f)

(g) (h)

(i)

(j) (k)

(l)

(b)

(c)

Figure 7. (a,d,g,j) Comparison of the 1D models inverted from synthetic
dispersion and ZH ratio using JointNet and Markov chain Monte Carlo
(McMC)-based method. The blue dashed lines represent the true models.
The green and red solid lines represent the inverted models using the
McMC-based method and JointNet, respectively. The width of the gray
shading represents one standard deviation of uncertainty from the McMC-
based method. (b,e,h,k) The blue dashed lines represent the calculated ZH
ratio from the true models. The green and red solid lines represent the
calculated ZH ratio from the inverted models using the McMC-based
method and JointNet, respectively. (c,f,i,l) The same as panels (b, e, h,
and k) but for phase velocity.
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results from both the methods reveal that the Huabei basin,
Ordos basin, and Weihe-Shanxi Rift System generally exhibit
low velocity, likely due to the presence of thick sediments at
shallow depth. At 10 and 20 km depths, the velocity patterns
gradually change, which can be observed in the results from
both methods. The Ordos basin and Huabei basin gradually
transition into high velocity, whereas the Yinshan Mountains
and Taihang Mountains turn into low velocity. At 50 km
depth, the low-velocity zone is centered around the Datong
Volcano, and extends along the Yinshan and Taihang
Mountains, indicating the extent of magmatism in the upper-
most mantle. The results from JointNet and the McMC-based
method demonstrate high similarity, proving the ability of
JointNet to recover a high-resolution VS model from phase
velocity and ZH ratio data. The results at 10 km depth are
slightly different due to the influence of the velocity interface
at the sedimentary basement.

The vertical VS profiles crossing the Datong volcano in
both the east–west and north–south directions, obtained
through these two methods, are shown in Figure 11. These
vertical profiles also exhibit remarkable similarity and
consistency with the geological settings. In summary, the

comparisons of the 1D profiles and 2D slices both suggest
that JointNet is a reliable method for crustal structure inver-
sion and can be considered a viable alternative to conven-
tional inversion methods.

Efficiency of the DNN method
Compared to the McMC-based methods, one notable advan-
tage of JointNet is its significantly reduced inversion time
(as demonstrated in Table 2). Specifically, for one sample
and using the same computer equipment, the McMC-based
method takes ∼1000 s for inversion (100,000 iterations),
whereas JointNet only requires ∼0.005 s. That means JointNet
achieves a speed improvement of ∼200,000 times. Even when
accounting for training time, this method remains significantly
more efficient than the McMC approach.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. (a,b,e,f) Distribution of the misfits between the inverted models
and the true models for the McMC-based method. (c,d,g,h) The same
as panels (a,b,e,f) but for JointNet. Distribution of the misfits between the
calculated (i) ZH ratio and (j) phase velocity dispersion from the inverted
models using the McMC-based method and the input values. (k,l) The same
as panels (i and j) but for JointNet.
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McMC-based methods typically rely on trial-and-error
approaches to obtain reliable inversion results by maximizing
the posterior probability p�mjx�, in which m represents the
velocity model, and x represents the observed data. In trial-
and-error methods, the prior probability p(m) is manually
defined, and forward calculations are performed to determine
the likelihood p�xjm�. However, calculating the p�xjm� often

demands substantial comput-
ing resources. Because of the
requirement of discarding
samples based on p�mjx�, the
McMC-based methods utilize
fewer samples for inversion.
In contrast, the DNN-based
method utilizes all available
samples to construct the inver-
sion function and directly fits
the maximum posterior proba-
bility p�mjx�:

m�DNN�x�
≈ argmax

m
p�mjx�: �3�

This allows for more effi-
cient and comprehensive use
of the dataset, reducing the
overall inversion time. The
DNN-based method only
requires forward calculations
during training, thus making
it faster than traditional
McMC-based inversion meth-
ods. The reduction in computa-
tional time is crucial, because
the large computational cost is
a common issue for nonlinear
inversion methods.

Moreover, because the ran-
domly generated models are all
within a reasonable model
space, the prior probability is
already included in the training
models. Therefore, JointNet

eliminates the step of inputting prior probability. In addition,
it minimizes the concern about getting trapped in local min-
ima. It is capable of achieving accurate inversion results with-
out the need for an initial model or prior information. This
allows for a more flexible and unbiased inversion procedure
to obtain structural information directly from the data.

DISCUSSIONS
Our results demonstrate that JointNet is capable of producing
reliable joint inversion results. In addition to its fast inversion
speed, which is typically advantageous for DNN-based meth-
ods, JointNet is also a multimodal learning model (Srivastava
and Salakhutdinov, 2014). Most of the existing DNN-based
methods take individual input physical parameter, typically
dispersion curve, for surface-wave tomography (e.g., Hu et al.,
2020; Cai et al., 2022; Luo et al., 2022). In contrast, JointNet

(a) (b)

(c)

(d) (e)

(f)

(g) (h)

(i)

(j) (k)

(l)

Figure 9. (a,d,g,j) Comparison of the 1D VS models inverted from observed Rayleigh swave phase velocity and ZH
ratio using JointNet (red lines) and the McMC-based method (green lines). The width of the gray shading represents
one standard deviation of uncertainty from the McMC-based method. (b,e,h,k) The red and green lines represent
the calculated ZH ratio from the inverted models obtained using JointNet and the McMC-based method. (c,f,i,l) The
same as (b, e, h, and k) but for phase velocity dispersion.

TABLE 2
Comparison of Error and Speed between JointNet and the
Markov Chain Monte Carlo (McMC)-Based Method

Methods JointNet McMC

Stand variation of error (km/s) 0.239 0.223
Inversion speed per 1000 inputs (s) ∼5 ∼1,000,000

636 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 114 Number 2 April 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/2/627/6338877/bssa-2023199.1.pdf
by Geophysical Exploration Center China Earthquake Administration user
on 08 April 2024



accepts dispersion curves and ZH ratios as input, which can
capture the information of two independent physical param-
eters. Furthermore, it produces multimodal outputs, including
the 1D velocity model and the thicknesses of the sedimentary
and crustal layers. This improves the capability of shallow
structure imaging, which is an advantage that most existing
networks do not have.

JointNet employs two separate transformer layers to
represent and summarize the dispersion and ZH ratio data,
and employs two fully connected layers to output the velocity

and thickness information. This makes it highly adaptable to
adding more physical quantities, such as raw waveform data.
Therefore, it can act as a framework for duplicated joint inver-
sion processing. This is also an innovation of JointNet com-
pared to the existing networks.
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Figure 10. Horizontal VS slices at 5–50 km depths from (a–d) JointNet and
(e–h) the McMC-based method. The depth is labeled in the top-left corner
of each panel. The tectonic units and the locations of the vertical profiles in
Figure 11 are marked in panel (a).
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JointNet provides flexibility for joint inversion. Hu et al.
(2020) proposed that deep learning-based inversion methods
may underperform compared to conventional inversion meth-
ods if the training dataset does not adequately represent the
real structures. JointNet is trained using a large number of syn-
thetic datasets with the necessary physical constraints based on
a reference model with reasonable perturbations. This feature,
combined with the parameterization strategy, can ensure a
broader model space. Therefore, it is capable of recovering
the majority of 1D crustal models worldwide, eliminating
the need for further training when applied to different regions.
In addition, a sufficient number of random models helps to
mitigate the issue of overfitting during neural network training.

JointNet also reduces the strict input format requirements.
Most published inversion networks are based on CNN or DNN
(Hu et al., 2020; Luo et al., 2022; Wang et al., 2023), which have
strict requirements for the input data format. An important
difference between JointNet and the existing neural networks
is that JointNet is a transformer-based model, which is suitable
for processing sequence data. By leveraging the capabilities
of the transformer model, it can learn comprehensive informa-
tion about the dispersion curve and ZH ratio curve. Therefore,
during the inversion process, the input dispersion and ZH ratio
of JointNet can have different period ranges and intervals com-
pared to the training data. We conducted experiments on this
and found that even if we remove the dispersion points of two
random periods for inversion, similar inversion results can still
be obtained, as shown in Figure 12. However, when more than
six dispersion points are removed, the inversion results may

have large deviations. In general, the phase velocity within
6–40 s periods and the ZH ratio within 10–24 s periods are
easy to obtain using ambient noise tomography based on
regional seismic arrays. However, in certain situations, the
period ranges of reliable dispersion and/or ZH ratio may
be different. In such cases, this loose input requirement of
JointNet provides additional flexibility, making it applicable
to most regional-scale crustal imaging studies.

By including both the dispersion and ZH ratio, the imaging
resolution of shallow structures is significantly improved. This is
particularly beneficial in basins with thick sediments. The pres-
ence of shallow low-velocity layers can have a substantial impact
on the inversion of crustal velocity structure (Yang et al., 2019).
Our results show that JointNet can reliably delineate the struc-
tures of the sedimentary layer. However, due to the nature of the
surface wave, it cannot provide ideal constraints for velocity dis-
continuity. The velocity values around the bottom of the sedi-
mentary layer and Moho might have larger errors. The same is
true for traditional methods such as the McMC-based method.
To address this issue, one possible solution is to incorporate the
receiver function or teleseismic P waveform data into the joint
inversion (Li et al., 2019; Berg et al., 2020). Because JointNet is a
multimodal learning model, it should be easily adapted to
include a new input dataset, such as the receiver function, to
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Figure 11. Vertical VS profiles at 0–50 km depths from (a,b) JointNet and
(c,d) the McMC-based method. The locations of these profiles are delineated
with gray dashed lines in Figure 10a.

638 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 114 Number 2 April 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/2/627/6338877/bssa-2023199.1.pdf
by Geophysical Exploration Center China Earthquake Administration user
on 08 April 2024



improve constraints on velocity discontinuities. This would be
further systematic research.

In this study, we use JointNet to invert the structures of
the crust and uppermost mantle. For studies with significantly
different lateral and/or vertical scales, such as deep mantel
imaging using surface waves with a longer period, direct appli-
cation of JointNet may not be feasible. In such cases, it would
be necessary to modify the parameters and retrain the DNN
model. This process is relatively straightforward to implement.

Because DNN directly fits the maximum value of the posterior
probability, it outputs a 1D model without the posterior proba-
bility distribution (Hu et al., 2020; Cai et al., 2022; Luo et al.,
2022). Thanks to the efficiency of JointNet, we assessed the uncer-
tainty of the inversion results by performing inversions on 100
datasets that were augmented with random Gaussian noise.
The mean and standard deviation of the VS models obtained
from these 100 inverted datasets are considered as the final inver-
sion results and uncertainty, respectively. Figure 13 demonstrates
that the uncertainty in the inverted models increases as the noise
level is elevated. In practical applications, datasets with larger
errors will result in greater uncertainty in the inverted models.

It can help to evaluate the reliability of the inverted models, sim-
ilar to the McMC-based method.

In addition, JointNet still has certain limitations in terms of
the training models and inverting results. For instance, the 1D
models are parameterized with B-splines to present VS in the
crust and upper mantle, respectively. It can produce relatively
smooth models, but, at the same time, it may lose some interface
information inside the crust or upper mantle. In addition, our
use of empirical relationships to calculate P-wave velocity and
density may lead to deviations between the synthetic and real
models. Because our model parameterization strategy is based
on the previous research, we did not evaluate the appropriateness
of the parameterization in this study. Although our inversion
tests show that these issues have a very small impact on the

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. (a–d) Distribution of the misfits between the inverted models from
JointNet and the true models. We randomly removed two dispersion points
for inversion. The number of removed dispersion points, depth range, mean,
and standard deviation are annotated in the top-left corner of each panel.
(e–h) The same as panels (a–d) but for six removed dispersion points.
(i–l) The same as panels (a–d) but for 10 removed dispersion points.
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results, it may still be worth further improvement. Another limi-
tation of JointNet is the relatively larger errors in the inverted
crustal thickness, which could potentially be addressed by incor-
porating receiver function data in the future research.

CONCLUSIONS
We develop a new multimodal network, JointNet, to jointly
invert Rayleigh wave phase velocity and ZH ratio for the 1D
VS model. It can produce consistent and stable results compared
to the conventional McMC-based method but with a much
higher inversion speed. Its network structure alleviates the
requirement for fixed-period inputs, and can be easily trained
and extended to include more input types. Therefore, JointNet
can serve as a joint inversion framework for regional crustal
structure investigation, with the characteristics of simple
training, fewer prior assumptions, and faster inversion speed
compared to conventional nonlinear methods.

DATA AND RESOURCES
The CRUST1.0 model can be obtained from the IRIS Data
Management System (http://ds.iris.edu/ds/products/emc-crust10, last
accessed August 2023). The Rayleigh wave phase velocity dispersion
and ZH ratio data used in this study are derived from Huang et al.
(2021) and accessible at DOI: 10.17632/9tcj862hrh.2.
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