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ABSTRACT: This article developed a deep learning (DL) model for estimating tropical cyclone (TC) 34-, 50-, and 64-kt
(1 kt ’ 0.51 m s21) wind radii in four quadrants from infrared images in the global ocean. We collected 63 675 TC images
from 2004 to 2016 and divided them into three periods (2004–12, 2013–14, and 2015–16) for model training, validation, and
testing. First, four DL-based radius estimation models were developed to estimate the TC wind radius for each of the four
quadrants. Then, the entire original images and the one-quarter-quadrant subimages were included in the model training
for each quadrant. Last, we modified the mean absolute error (MAE) loss function in these DL-based models to reduce
the side effect of an unbalanced distribution of wind radii and developed an asymmetric TC wind radius estimation model
globally. The comparison of model results with the best-track data of TCs shows that the MAEs of 34-kt wind radius are
18.8, 19.5, 18.6, and 18.8 n mi (1 n mi5 1.852 km) for the northeast, southeast, southwest, and northwest quadrants, respec-
tively. The MAEs of 50-kt wind radius are 11.3, 11.3, 11.1, and 10.8 n mi, respectively, and the MAEs of 64-kt wind radius
are 8.9, 9.9, 9.2, and 8.7 n mi, respectively. These results represent a 12.1%–35.5% improvement over existing methods
in the literature. In addition, the DL-based models were interpreted with two deep visualization toolboxes. The results
indicate that the TC eye, cloud, and TC spiral structure are the main factors that affect the model performance.
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1. Introduction

Tropical cyclones (TCs) are intense weather processes gener-
ated over tropical oceans and could cause enormous damage to
human lives and properties in the coastal regions owing to se-
vere flooding, destructive wind, and coastal inundation from
storm surges. Therefore, TC monitoring is critical to mitigating
damage in coastal areas. TC wind radius represents the size
of the TC influence area, and an accurate estimate of the TC
wind radius is critical for emergency responders to provide TC
warning information (DeMaria et al. 2013; Bender et al. 2017).
TC wind radius is defined into three categories according to
wind speed, including the gale-force winds (R34; 34 kt, where
1 kt 5 0.51 m s21), destructive winds (R50; 50 kt), and
hurricane-force winds (R64; 64 kt) as measured radially in four
geographic quadrants [i.e., in the northeast (NE), southeast
(SE), southwest (SW), and northwest (NW) directions].

Satellite observations are widely used in TC wind radii esti-
mation (Landsea and Franklin 2013). According to the type
of satellite, satellite-based TC wind radius estimation methods
are classified as scatterometers-based (Halpern 1993; Mears
et al. 2001; Ebuchi et al. 2002; Chavas and Emanuel 2010; Chan
and Chan 2012; Landsea and Franklin 2013), spaceborne-
synthetic-aperture-radars-based (SAR-based) (Zhang and
Perrie 2012; Zhang et al. 2014; Horstmann et al. 2015; Mouche
et al. 2017; Fan et al. 2020; Mouche et al. 2019; Zhang et al.
2021), and satellite-infrared-image-based (Mueller et al. 2006;
Kossin et al. 2007; Knaff et al. 2016; Dolling et al. 2016; Zhuo
and Tan 2021) methods.

The scatterometer-based (e.g., ASCAT, QuikSCAT, and
OSCAT scatterometers) and SAR-based methods are similar.
These methods first measure the surface wind and then ex-
tract the TC wind radius from the surface wind (Reul et al.
2012; Yueh et al. 2016; Reul et al. 2017; Fore et al. 2018; Sun
et al. 2019; Mouche et al. 2019; Zhang et al. 2021). However,
the scatterometer-based and SAR-based methods are not a
static observation of a region, frequently only observe a part
of TC, and are affected by rainfall, have certain limitations.

The satellite-infrared-image-based methods are real-time
and objective. Mueller et al. (2006) and Kossin et al. (2007)
used infrared images, the maximum sustained wind speed,
and the radius of maximum wind to establish a multiple linear
regression model to estimate TC wind radius. Dolling et al.
(2016) used deviation angle variance calculated from infrared
images, TC age, and SST (sea surface temperature) to estab-
lish the TC wind radii estimation with a multiple linear regres-
sion model. They found that the unbalanced distribution of
samples with different TC wind radii may result in large errors
for large TC wind radii with small sample sizes (Dolling et al.
2016). The satellite-infrared-image-based methods have not
yet determined the physical relationships between the struc-
ture of the TC wind and the top of the cloud field. Therefore,
developing objective methods to interpret complex TC dy-
namics from satellite observations is critical.

Several satellite-based TC wind radii estimation methods
are available, each with advantages and disadvantages. The
errors of TC wind radius from satellite-based methods have
been estimated to be 10%–60%, depending on the quality
and quantity of the available observations (Landsea and
Franklin 2013). Therefore, it is also a great challenge toCorresponding author: Xiaofeng Li, xiaofeng.li@ieee.org
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develop an accurate satellite-based method to estimate TC
wind radii.

Deep learning (DL) is a type of artificial intelligence algo-
rithm, including deep neural networks, recurrent neural net-
works, and convolutional neural networks (CNN), among
others (Goodfellow et al. 2016). CNNs are widely used in the
field of image processing. A CNN is a feed-forward deep neural
network inspired by the biological natural visual cognition mech-
anism (Goodfellow et al. 2016) and has achieved great success
in image classification, target recognition, and other research
fields (LeCun et al. 1995; Sun et al. 2014; Li et al. 2020, 2022).
Recently, Zhuo and Tan (2021) developed a CNNmodel to esti-
mate TC wind radii and obtain good accuracy. However, the
asymmetric TC wind structure was not considered, and they
used the nonzero-azimuthal average of data from four quadrants
and replaced wind radii for four quadrants.

This study addresses three key issues in TC radii estimate
from geostationary infrared imagery. First, there is no deep
learning model for estimating asymmetric TC wind radius.
Second, the unbalanced distribution of samples with different
TC wind radii could cause large errors in TCs with large wind
radii. Third, TCs in different oceans have different structural
characteristics. The first goal is to overcome the difficulties
mentioned above and develop an objective and efficient TC
wind radii estimation method for estimating TC wind radius
in four quadrants, and the second goal is to explore the features
in infrared images that are more related to estimating TC wind
radius. Therefore, we developed a group of deep learning
models (DL-TCR) and selected the best to estimate the TC
wind radius over the global ocean using infrared images.

Sections 2 and 3 introduce the dataset and the DL-based
models. Then, the model results analysis and discussion are
given in section 4. The summaries are presented in section 5.

2. Data and method

a. Geostationary satellite infrared TC images

The TC infrared images used in this study were from the
Hurricane Satellite dataset (HURSAT-B1), which was com-
piled from the global constellation of geostationary satellites
(GOES, GMS, Meteosat series, etc.) between 1979 and 2016
(Knapp and Kossin 2007). HURSAT-B1 has about 380 000
satellite images from the infrared (;11 mm), near-infrared
(;3.9 mm), split window (;12 mm), and water vapor (;6.7 mm)
bands, and so on. HURSAT-B1 includes TC images in the
Atlantic, Pacific, and Indian Ocean basins, with the most
data for the Pacific. The time interval of HURSAT-B1 is 3 h.
The infrared images were gridded to 8 km, with grid centers
fixed on the TC center, and the size of each infrared image is
301 3 301 pixels. About 0.5% of images were removed because
of poor imaging quality (strip loss, etc.).

b. Best-track dataset of TCs

The International Best Track Archive for Climate Steward-
ship (IBTrACS) provided by the National Oceanic and At-
mospheric Administration was used to label infrared images
(Knapp et al. 2010). IBTrACS data combine R34 (34-kt wind

radii), R50 (50-kt wind radii), and R64 (64-kt wind radii) for
each quadrant (NE, SE, SW, and NW). The best-track data
have been widely used to validate the model results of wind
radius (Zhuo and Tan 2021; Zhang et al. 2021). We also ran
the quality control of the dataset. When wind radii labels did
not meet the R34 . R50 . R64, R34 $ radius of maximum
wind (RMW), R50 $ RMW, and R64 $ RMW criteria, they
were considered to be bad data and were eliminated (Kossin
et al. 2007; Zhuo and Tan 2021).

c. Data preprocessing

Data normalization is crucial before neural network train-
ing to speed up calculations and get good results (Sola and
Sevilla 1997). In this article, infrared images were linearly
transformed to the interval [0, 1] by

y 5
x 2 xmin

xmax 2 xmin
, (1)

where xmin and xmax are the minimum and maximum values
of the brightness temperature from all images, and y is the
normalized pixel value limited to [0, 1]. Different ocean basins
(the North Atlantic, the Northwest Pacific, the Northeast
Pacific, and the Southern Hemisphere) will be normalized
separately.

For each image, we extracted a 151 3 151 pixel image cen-
tered on the TC center from IBTrACS. An example is shown
in Fig. 1. Continuous-time images proved useful for TC wind
radii estimation (Zhuo and Tan 2021). The current image and
the image 3 h prior were used as inputs to our models.

We obtained 63 076, 27 210, and 19 937 sample images for
R34, R50, and R64 wind radii, respectively, between 2004
and 2016. In artificial intelligence (AI) model development,
the dataset is usually divided into three groups: training, vali-
dation, and test. In the model training process, the training

FIG. 1. Brightness temperature (K) image of TC Joaquin at
1500 UTC 3 Oct 2015, with the asymmetric TC wind radius in the
NE, SE, SW, and NW quadrants of 155, 180, 130, and 110 n mi,
respectively.
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data are used to update the model’s internal parameters; the
validation data are used to assist model training and prevent
model overfitting; the test data are used for model evaluation.
The data were divided into training data from 2004 to 2012,
validation data from 2013 to 2014, and test data from 2015 to
2016 (Table 1).

We developed different models for different ocean basins.
The models for each ocean are separately trained, validated,
and tested using the TC data of that ocean. The north Indian
Ocean was not considered independently because of the small
amount of data. The number of training, validation, and test
data are shown in Table 2.

In the IBTrACS data, the relative uncertainty of data using
only satellite observation is between 35% and 53%, and the
same data using aircraft reconnaissance is between 28% and
38% (Landsea and Franklin 2013). Therefore, more aircraft ob-
servations are available for the IBTrACS data in the North At-
lantic. On the other hand, in DL, more stable data allow for
more accurate optimization of model parameters (Goodfellow
et al. 2016), and more aircraft observations are available in the
North Atlantic with minimal uncertainty in the IBTrACS data.
Thus, the data over the North Atlantic between 2004 and 2016
were used for training, validation, and testing to obtain the opti-
mal DL-TCR model parameter. Once we found the optimal
DL-TCR model parameter, the global TC wind radius estima-
tion models were further developed.

3. TC wind radius estimation model

a. Development of the DL-TCR model

The DL model is based on a CNN architecture that contains
convolutional, pooling, and fully connected layers (Srivastava

et al. 2014; Goodfellow et al. 2016). The input images were ex-
tracted image features at the convolutional layer and filtered the
maximum value of these features at the max-pooling layer. The
fully connected layer learns all the relationships between fea-
tures and wind radii. The CNN is designed as a feedforward net-
work and trained with the backpropagation algorithm. The
errors back propagate in a network; the CNN is optimized by
updating the weights and biases to minimize the loss function
(Srivastava et al. 2014; Goodfellow et al. 2016). CNN has been
widely used in atmospheric and ocean science, e.g., estimate TC
intensity (Chen et al. 2019; Wimmers et al. 2019; Wang et al.
2022), estimate TC wind radii (Zhuo and Tan 2021), detect and
forecast ocean phenomena, sea ice, and TC rapid intensification
(Zhang and Li 2021; Liu et al. 2021; S. Zhang et al. 2022; Ren
et al. 2022; X. Zhang et al. 2022; Griffin et al. 2022). Widely used
CNN models include VGGNet, ResNet, and GoogLeNet, etc.
(Krizhevsky et al. 2012; Simonyan and Zisserman 2014; Szegedy
et al. 2016; He et al. 2016; Chollet 2017). Different CNN models
have different advantages and drawbacks. Zhuo and Tan (2021)
have proven that the VGGNet is suitable for estimating TC wind
radii. Therefore, we selected the VGGNet as the basic model.

Since the structure of TC wind radii is asymmetrical, mak-
ing it hard to train the CNN model using the single original
image, we need more useful information or features to help
improve model performance. Therefore, four improved CNN
models (DL-TCR) were developed to estimate R34, R50, and
R64 in the NE, NW, SE, and SW quadrants. As shown in Fig. 2,
the DL-TCR model contains the standard CNN architecture
(Part A, labeled “A” in Fig. 2) and an additional Part B (labeled
“B” in Fig. 2), which is used to enhance the learning of the fea-
tures of the corresponding quadrant TC wind radii. It means
that four images are input to the DL-TCR model, two being the
original images at the current time and 3 h prior, and two corre-
sponding quadrant images (Fig. 2). For example, the subimage
of the NE quadrant is the NE quadrant wind radii DL-TCR
model input and is used to estimate the TC wind radius at the
NE quadrant. The features of the two images were extracted at
the convolution layer and connected at the full connection layer.
Last, the TC wind radius at the NE quadrant is obtained.

The channel size of DL-TCR convolutional layers and fully
connected layers are shown in Fig. 2. The spatial and channel

TABLE 1. The training, validation, and test datasets for TC wind
radii of R34, R50, and R64.

Name
Training data
(2004–12)

Validation data
(2013–14)

Test data
(2015–16)

R34 43 466 11 231 8379
R50 18 192 4320 4698
R64 13 839 2719 3379

TABLE 2. The number of training, validation, and test datasets for TC wind radii of R34, R50, and R64 in the North Atlantic,
Northwest Pacific, Northeast Pacific, and Southern Hemisphere.

Name Training data (2004–12) Validation data (2013–14) Test data (2015–16)

R34}North Atlantic 8502 860 940
R34}Northwest Pacific 17 094 2599 2769
R34}Northeast Pacific 6882 1875 2301
R34}The Southern Hemisphere 14 012 2870 2369
R50}North Atlantic 3677 304 483
R50}Northwest Pacific 8553 1815 1608
R50}Northeast Pacific 3168 979 1435
R50}The Southern Hemisphere 6653 1222 1172
R64}North Atlantic 2401 160 329
R64}Northwest Pacific 5726 1358 1326
R64}Northeast Pacific 1877 432 961
R64}The Southern Hemisphere 3835 769 763
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attention layers were added before each convolutional layer.
These spatial and channel attention layers add weight to the
important parts of the images. The areas in images DL-TCR
models considered important for TC wind radii estimation
were found by analyzing the attention layer, as discussed in
section 4d.

b. Optimize the DL-TCR model architecture

The model input and parameters affect the DL-TCR
model’s performance. In section 4a, several DL-TCR models
with different inputs or model parameters are designed to
obtain the optimal model for TC wind radius estimation from
IR images based on the North Atlantic validation data. The
nonlinear Relu was adopted to activate the convolution and
the full connection layers. The optimization function is Adam
(Kingma and Ba 2014). The loss function is the mean absolute
error (MAE). The dropout layer was used for each full connec-
tion layer (Srivastava et al. 2014). Each DL-TCR model is com-
posed of 12 submodels for the estimation of tropical cyclone
wind radius in four quadrants of R34, R50, and R64.

We applied the optimal model to the global TC wind radii
estimation and discussed the results based on the global ocean
test data in section 4b. A modified loss function is used to de-
crease the side effect of the unbalanced TC wind radii data
with different sizes in section 4c. Note that each model described

in section 4 was trained three times. To evaluate the model per-
formance, we take the 3-times-averaged model results.

4. Results and discussion

a. DL-TCR model performance with different model
architecture

This section compares the results of the models with different
inputs and model configurations. For example, the different
architectures (Parts A and B) of the DL-TCR model are shown
in Fig. 2.

Table 3 and Fig. 3 show the TC wind radii estimation re-
sults for the DL-TCR models using validation data from
different model configurations and input. The MAE of the
DL-TCR 1 model for NE, SE, SW, and NW quadrants is 20.9,
22.0, 18.5, and 19.8 n mi (1 n mi 5 1.852 km), respectively.
The results show that adding the channel and spatial attention
layers improves model performance by enhancing the model’s
focus on key regions. DL-TCR 2 has achieved 1.4%, 2.3%,
3.2%, and 2.5% improvements in the NE, SE, SW, and NW
quadrants, respectively. We then investigated the influence
of various input data on model performance. Combining
the original image and corresponding quadrant subimage as
DL-TCR 3 input data obtain the best results in Table 3. The
MAEs for NE, SE, SW, and NW quadrants are 19.5, 21.0,
17.0, and 18.9 n mi, respectively.

FIG. 2. The architecture of the DL-TCR model for estimating TC wind radii (FC means the fully
connected layer), showing Parts A and B.

TABLE 3. The mean absolute errors (n mi) over the North Atlantic validation datasets of R34 TC wind radii estimation with
different model configurations and input. The VGGNet is shown in Fig. 2 (labeled “A”).

Model identifier Input Configurations NE SE SW NW

DL-TCR 1 Original image VGGNet 20.9 22.0 18.5 19.8
DL-TCR 2 Original image VGGNet 1 attention layer 20.6 (1.4%) 21.5 (2.3%) 17.9 (3.2%) 19.3 (2.5%)
DL-TCR 3 Original image 1 corresponding

quadrant image
VGGNet 1 attention layer 19.5 (6.7%) 21.0 (4.5%) 17.0 (8.1%) 18.9 (4.5%)
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Figure 4 shows the R34 TC wind radius scatterplots from
the best-track data and the DL-TCR 3 on the North Atlantic
validation datasets, illustrating the R34 TC wind radius asym-
metry. The maximal and minimal sizes are different in the
four quadrants. The NE, SE, SW, and NW quadrants’ correla-
tion coefficients are about 0.80. As shown in Fig. 4, for the
large size TCs (TC wind radii . 140 n mi), the DL-TCR
underestimates the size of R34. The phenomenon is due to
the unbalanced distribution of TC wind radius samples, which
is also a common problem in other DL methods (Pradhan
et al. 2018; Chen et al. 2019). i.e., it is difficult to obtain good
results for the unbalanced data distribution. And we will dis-
cuss the problem in section 4c.

Once we found the best DL-TCR 3 model configurations,
R50 and R64 TC wind radii estimation models were further
developed. The comparisons of R50 and R64 between the
best-track data and the DL-TCR 3 on the North Atlantic vali-
dation datasets are shown in Table 4 and Figs. 5 and 6. The
R50 TC wind radius has MAEs of 11.0, 11.9, 9.8, and 10.1 n mi
for the NE, SE, SW, and NW quadrants, respectively. The R64
TC wind radius has MAEs of 8.6, 9.4, 9.3, and 8.3 n mi for the
same quadrants. The MAEs of R34 are greater than the error
of R54 and greater than the error of R64. The R50 has the cor-
relation coefficient of 0.75, 0.74, 0.78, and 0.72 for the NE, SE,
SW, and NW quadrants, respectively, and the R64 TC wind ra-
dius has the correlation coefficient of 0.72, 0.76, 0.75, and 0.71
for the same quadrants. Although DL-TCR 3 obtains the lowest
MAE of TC wind radius, it also underestimates the large wind
radius data.

b. The global TC wind radii estimation models

In this section, we divide the globe into four regions: the
North Atlantic, the Northwest Pacific, the Northeast Pacific,

and the Southern Hemisphere. The Northern Indian Ocean
was not considered in this paper because of the small amount
of data. We trained different models with DL-TCR 3 model
configurations for different regions, and the models for the
North Atlantic have been described in section 4a. The models
for each region are separately trained, validated, and tested
using the TC data of that region. The four regions’ TC wind
radii estimation models form the global TC wind radii estima-
tion models. The results were evaluated by comparing the
model result with the best-track data on test datasets de-
scribed in section 2.

Table 5 and Fig. 7 show the MAEs of the TC wind radius
estimation model in different oceans. In the Northwest Pa-
cific, the MAEs of the R34 TC wind radius are 18.6, 17.6, 17.3,
and 19.0 n mi for the NE, SE, SW, and NW, respectively. The
MAEs of R50 TC wind radius are 11.2, 11.3, 11.4, and 10.7 n mi,
while the MAEs of R64 TC wind radius are 8.8, 9.6, 8.9, and
8.5 n mi for the same quadrants. In the Northeast Pacific, the
MAEs of the R34 TC wind radius are 17.5, 17.3, 16.9, and
16.9 n mi for the NE, SE, SW, and NW, respectively. The
MAEs of R50 TC wind radius are 10.5, 10.9, 11.3, and 10.2 n mi,
and the MAEs of R64 TC wind radius are 8.7, 9.3, 8.7, and
8.4 n mi for the same quadrants. In the Southern Hemisphere,
the MAEs of R34 TC wind radius are 18.9, 21.8, 20.7, and
18.4 n mi for the NE, SE, SW, and NW, respectively. The
MAEs of R50 TC wind radius are 11.6, 12.1, 10.2, and 10.9 n mi,
and the MAEs of R64 TC wind radius are 9.2, 10.4, 9.7, and
9.1 n mi for the same quadrants. The MAEs in the Southern
Hemispheres are greater than in the North Atlantic, greater
than in the Northwest Pacific, and greater than in the North-
east Pacific. The results indicate that the TC characteristics
of different oceans are different, and the model has differ-
ent learning abilities.

c. Unbalanced distribution of TC wind radii size

Figures 4–6 show that the unbalanced distribution of TC
wind radius causes the models to underestimate the large TC
wind radius. In this section, R34 TC wind radii will be used as
an example to discuss the solution.

As Table 6 shows, the MAEs are not satisfactory for esti-
mating large TC wind radii with unbalanced training samples.
The biases of the TC wind radii larger than 210 n mi are
234.0, 241.3, 249.4, and248.0 n mi for the NE, SE, SW, and
NW quadrants, respectively. To see why, assume 100 training
samples for which 98 have a TC wind radius of 100 n mi
(hereinafter referred to as Part I) and 2 have a wind radius
of 200 n mi (hereinafter referred to as Part II). Using the
traditional MAE loss function (function 2.1), if the model
estimates Part I as 110 n mi, the loss value of Part I is 9.8. If
the model estimates Part II as 190 n mi, the loss value of
Part II is 0.2. As a result, the combined loss is 10. Obviously,
improving the accuracy of Part I is more helpful in reducing
the loss value. Therefore, the model tends to learn more
from Part I first. However, the model does not estimate per-
fectly for all samples, and when much attention is paid to
Part I, Part II will be neglected.

FIG. 3. The mean absolute errors for each quadrant R34 TC
wind radii estimation of the DL-TCR 1 (blue), DL-TCR 2 (red),
and DL-TCR 3 (yellow) models on the North Atlantic validation
datasets.
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To reduce the side effect of an unbalanced distribution
of TC wind radius, we can add or remove parts of the data
to keep the number of TC wind radii data in each size
(Pradhan et al. 2018). However, this reduction would dra-
matically reduce the number of training data. Another
method is to increase the weight of the sample with fewer

data in the loss, that is, focal loss, which shows its superi-
ority in the field of target recognition (Lin et al. 2017).
Therefore, we modified the MAE loss function, named
MAE-weight, which is a combination of the traditional
MAE loss function (function 2.1) and the modified MAE
loss function (function 2.2):

loss �
1
N
∑
N

i�1
abs(ytrue 2 ypred) (if ytrue , 140; function 2:1)

1
N
∑
N

i�1
abs(ytrue 2 ypred) 3 at 3

ytrue 2 ymin
true

ymax
true 2 ymin

true
(if ytrue $ 140; function 2:2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

FIG. 4. Comparison of the R34 TC wind radii from the best-track data with the results of the DL-TCR 3 mod-
els on the North Atlantic validation datasets: (a) NE quadrant, (b) SE quadrant, (c) SW quadrant, and (d) NW
quadrant.

TABLE 4. The mean absolute errors (n mi) on the North Atlantic validation datasets of R34, R50, and R64 TC wind radii estimation
using DL-TCR 3 models.

Input Configurations NE SE SW NW

R34 Original image 1 corresponding quadrant image VGGNet 1 attention layer 19.5 21.0 17.0 18.9
R50 Original image 1 corresponding quadrant image VGGNet 1 attention layer 11.0 11.9 9.8 10.1
R64 Original image 1 corresponding quadrant image VGGNet 1 attention layer 8.6 9.4 9.3 8.3
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where N is the number of samples; abs() calculates the abso-
lute value; ytrue is the true value from the best-track data; ypred
is the model output; at is the weight coefficient (in this article,
at 5 5); and ymin

true and ymax
true are the minimum and maximum of

the samples, respectively.
As shown in function 2.2, we increase the weight of the

samples in which the TC wind radii are larger than 140 n mi.
When the TC wind radius is greater than 140 n mi, at 3
(ytrue 2 ymin

true)/(ymax
true 2 ymin

true) increases with the increase of the
TC wind radius. Therefore, the cost (loss value) of underesti-
mating the large TC wind radius samples is increased so that
the DL model will enhance the learning of the large TC wind
radius samples. Table 6 and Fig. 8 show that the underestima-
tion at the large wind radii becomes lower using MAE-weight
in DL-TCR 3. The bias of R34 greater than 140 n mi de-
creased for the NE, SE, SW, and NW quadrants. On the con-
trary, the bias of R34 between 70 and 140 n mi increased from
26.7, 26.8, 27.2, and 26.7 n mi to 3.7, 3.0, 1.9, and 3.7 n mi
for the same quadrants. The bias of R34 less than 70 n mi
increased. For R34 greater than 70 n mi, the model’s bias
using the MAE-weight loss function is closer to 0 than the
MAE loss function. There is little variation in the MAEs of
the R34 TC wind radius. The results of R34 less than 70 n mi in-
dicate that the increasing weights can improve the estimation of

the model for a specific sample but at the expense of per-
formance for other samples. A balance between enhance-
ment and sacrifice can be found by adjusting the weighting
factor.

The results show that the side effects of the unbalanced dis-
tribution of TC wind radius can be reduced by modifying the
MAE loss function in the DL-TCR model. This MAE-weight
loss function is also used for R50 and R64 TC wind radius es-
timation. The DL-TCR 3 model with the corresponding quad-
rant image, attention layer, and MAE-weight loss function is
considered the best global TC wind radii estimation model.
As shown in Table 7, the global TC wind radii estimation
models obtain MAEs of R34 of 18.8, 19.5, 18.6, and 18.8 n mi
for the NE, SE, SW, and NW quadrants, MAEs of R50 of
11.3, 11.3, 11.1, and 10.8 n mi for the same quadrants, and
MAEs of R64 of 8.9, 9.9, 9.2, and 8.7 n mi for the same quad-
rants. To the authors’ knowledge, DL-TCR is the first DL
model for estimating asymmetries TC wind radius from infra-
red satellite images. We compared the TC wind radii estima-
tion model’s performance in estimating TC wind radii with
the techniques using infrared images listed in Table 7.

In comparison with Kossin’s and Zhuo’s methods (Kossin
et al. 2007; Zhuo and Tan 2021), our method can estimate the
asymmetric TC wind radius. Using data from the same year as

FIG. 5. As in Fig. 4, but for R50.
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test data and other data as training and validation data, we
compare the performance of our and other asymmetric TC
wind radius estimation methods (Knaff et al. 2016; Dolling
et al. 2016). The results show that our method exhibits smaller
MAEs than the traditional method for estimating all four
quadrants of the asymmetric TC wind radii globally (Knaff
et al. 2016; Dolling et al. 2016).

d. Visualization of DL-TCR

DL is commonly recognized as a black box, extracting
many features from infrared images and establishing relation-
ships between these features and the output. However, the
black box does not explain how to understand the DL-based

model and TCs. The interpretability of DL models is a chal-
lenge and a hot research topic in DL. To our knowledge, the
weight and heat maps are currently the most common and ef-
fective methods to explain the DL model. The weight map
shows the weights calculated by the attention layer. The heat
map is the effect of the input image on the model output.
Since the DL-TCR model extracts different features from dif-
ferent samples, we averaged the weights of the attention layer
to analyze all the TC samples in test data and used the heat
map of the input layer to analyze the individual samples. The
toolboxes developed by Kotikalapudi et al. (2017), and Lund-
berg and Lee (2017) were used for the model interpretation
work. However, note that most publicly AI interpretable

FIG. 6. As in Fig. 4, but for R64.

TABLE 5. The mean absolute errors (n mi) on test datasets of R34, R50, and R64 TC wind radii estimation in different oceans.

R34 R50 R64

Test data NE SE SW NW NE SE SW NW NE SE SW NW

North Atlantic 19.6 21.2 17.8 19.2 11.2 11.3 10.0 10.9 8.8 9.7 8.7 9.0
Northwest Pacific 18.6 17.6 17.3 19.0 11.2 11.3 11.4 10.7 8.8 9.6 8.9 8.5
Northeast Pacific 17.5 17.3 16.9 16.9 10.5 10.9 11.3 10.2 8.7 9.3 8.7 8.4
Southern Hemisphere 18.9 21.8 20.7 18.4 11.6 12.1 10.2 10.9 9.2 10.4 9.7 9.1
Global 18.5 19.1 18.2 18.3 11.1 10.8 10.9 10.6 8.9 9.7 9.0 8.6
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methods are for classification, not regression problems. Therefore,
we use the Shap values and saliency maps methods, which can be
extended to regression applications, to calculate the heat map
(Lundberg and Lee 2017; Simonyan et al. 2013). In the weight
and heat maps, a larger value represents the feature with higher
relevance to the TC wind radii.

Figure 9 shows the weights and differences of the first
attention layer behind the input layer of the DL-TCR model.
Figures 9a, 9d, 9g, and 9j are the weights of the NE, SE, SW,
and NW quadrants TC wind radii estimation models on the

original image. The weight distributions of the four models
for the original images are very similar, differing only in
value. The distribution of weights in the four quadrants is
asymmetric, indicating that our models can learn the asym-
metric structure of the TC. The NE quadrant has more
weight than the other quadrants, with the largest weights
near the center of the TC and decreasing toward the periph-
ery. The results indicate that our model considers the area
closer to the TC center more important for estimating the
TC wind radius.

FIG. 7. The mean absolute errors on test datasets of R34, R50, and R64 TC wind radii estimation in different oceans.

TABLE 6. The bias (n mi) of R34 TC wind radii estimation with different loss functions in the global ocean (including the
Northwest Pacific, Northeast Pacific, and the Southern Hemisphere) on test datasets. The value in the parentheses represents the
number of samples. Note that a TC may have observation records from multiple satellite observations simultaneously, and only one
record will be kept for these samples.

Bias for loss function 5 MAE Bias for loss function 5 MAE-weight

Size (n mi) NE SE SW NW NE SE SW NW

#70 14.5 (1327) 14.8 (1674) 13.0 (2246) 11.7 (1595) 17.3 16.9 15.5 14.0
70–140 26.7 (2663) 26.8 (2420) 27.2 (2064) 26.7 (2643) 3.7 3.0 1.9 3.7
140–210 225.3 (550) 225.6 (474) 229.3 (259) 225.8 (331) 213.7 213.6 219.5 216.0
.210 234.0 (89) 241.3 (61) 249.4 (60) 248.0 (60) 222.8 230.7 224.1 224.1
MAE 18.5 19.1 18.2 18.3 18.8 19.5 18.6 18.8
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Figures 9b, 9e, 9h, and 9k are the weights of the NE, SE,
SW, and NW quadrants TC wind radii estimation models on
the subimage. Same to the weight distribution in the original
image, the weights near the TC center are larger than in the
other area. The weight distribution in the NE and SW quad-
rants is close to a one-quarter circle, and the weight distribu-
tion in the SE and NW quadrants is closer to a one-quarter
ellipse. The results illustrate that the features learned in dif-
ferent quadrants are different.

Figures 9c, 9f, 9i, and 9l are the difference between the
weights of the corresponding quadrant on the original image
and subimage. Since their weights have different value ranges,
the left and center columns of Fig. 9 were transformed to the
interval [0, 1], and then the right column of Fig. 9 is the abso-
lute value of their difference. Figures 9c, 9f, 9i, and 9l show
that the whole images and the corresponding subimages pro-
vide different feature information to the DL model, both of
which are helpful to the DL model.

FIG. 8. The bias (n mi) for each quadrant at different TC wind radii of the DL-TCRmodels with a different loss function
in the global ocean (including the Northwest Pacific, Northeast Pacific, and the Southern Hemisphere) on test datasets.

TABLE 7. The comparison of the MAEs (n mi) of DL-TCR models and other methods in estimating TC wind radii using infrared
satellite image.

R34 R50 R64

Method Test data NE SE SW NW NE SE SW NW NE SE SW NW

Kossin et al. (2007) 2005 24.2 19.8 14.5
Knaff et al. (2016) 2011–13 37 20 12
Knaff et al. (2016) 2011–13 44 37 36 41 21 21 23 23 13 13 13 14
DL-TCR Same year data as in

Knaff et al. (2016)
19.8 19.3 17.9 20.0 11.7 11.4 10.8 11.1 9.1 9.8 9.7 8.9

Zhuo and Tan (2021) 2017 and 2019 17.0 12.5 9.2
Dolling et al. (2016) 21 TCs between 2004 and 2010 20.8 12.5 7.3
Dolling et al. (2016) 21 TCs between 2004 and 2010 27.7 25.2 19.9 30.1 17.4 16.7 12.3 18.1 10.3 8.9 6.9 9.1
DL-TCR Same TC data as in

Dolling et al. (2016)
18.8 17.8 17.5 19.4 11.5 11.2 10.9 10.9 8.9 9.5 9.0 8.8

DL-TCR 2015–16 18.8 19.5 18.6 18.8 11.3 11.3 11.1 10.8 8.9 9.9 9.2 8.7
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For different samples, the DL-TCR model learns different
features. For example, Figs. 10a–e are the samples of tropical
storm (34–63 kt), category 1 (64–82 kt), category 2 (83–95 kt),
category 3 (96–112 kt), and category 4 (113–136 kt). The left
and left-center columns are the input images at the current
time and 3 h ago, respectively. The right-center and right col-
umns are the heat maps of the input layer calculated by the
Shap values (called Shap heat map) and saliency maps meth-
ods (called saliency heat map), respectively.

The Shap method uses the classical Shapley values from
game theory and their associated extensions to explain the

output of any DL model. The Shap heat map shows that the
model focuses on the cloud regions, spiral structures in the TC
eye, and low brightness temperature. In particular, the model
focuses on the edges of the TC cloud region. The spiral structure
of the TC can be seen in the right middle column of Figs. 10a
and 10c. This result indicates that the model considers the spiral,
which represents convection to some extent, important for esti-
mating TC wind radius.

The saliency maps method focuses on the relevance be-
tween individual pixels in the input and output images. So
there is a difference between the heat map calculated by these

FIG. 9. The weights and differences of the first attention layer behind the input layer at the (a)–(c) NE, (d)–(f) SE, (g)–(i) SW, and
(j)–(l) NW quadrants in DL-TCR models: (left) the weights for original images from Part A of the DL-TCR model, (center) the weights of the
same quadrants for subimages from Part B of the DL-TCR model, and (right) the difference between the corresponding quadrants. Note that
the left and center columns were transformed to the interval [0, 1] and then the right column is the absolute value of their difference.
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FIG. 10. Original images and heat maps of (a) tropical storm (34–63 kt), (b) category 1 (64–82 kt), (c) category 2 (83–95 kt), (d) category
3 (96–112 kt), and (e) category 4 (113–136 kt), showing (left) the input image at the current time, (left center) the input image 3 h prior,
(right center) Shap heat maps, and (right) saliency heat maps.
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two methods. The saliency heat maps show that the model
considers the TC eye and the TC spiral structure most rele-
vant to the TC wind radius. The heat maps calculated by both
methods show that the TC center, cloud, and TC spiral struc-
ture are the main factors that affect the model performance.
The result is the same as the traditional perception and proves
that the DL-TCR model can accurately extract features re-
lated to TC wind radius from the images.

Traditional techniques Kossin et al. (2007), Knaff et al.
(2016), Dolling et al. (2016) are mainly based on human un-
derstanding of TCs and manual analysis of specific features
(e.g., spiraling, central cold clouds, asymmetries or symme-
tries, deviation angle variance, etc.). TC wind radii are a func-
tion of these features. However, DL-TCRs can extract more
abstract features from TC images and establish a nonlinear rela-
tionship between these features and TC wind radius. Therefore,
it is important to visualize DL-TCRs using interpretation meth-
ods that can help people understand TCs, which can be helpful
for future TC research.

5. Summary

TCs are one of the most serious disasters. It is important to
estimate their wind radius. A large TC wind radius represents
a large TC impact area, which can cause more damage. How-
ever, in existing satellite-infrared-image-based methods, the
large TC wind radius is often underestimated because of the
unbalanced samples, and there are no DL methods for esti-
mating global asymmetric TC wind radii. This article devel-
oped objective DL-TCR models to estimate asymmetric TC
wind radii from infrared images. Results indicate that adding
the attention layers in the VGGNet and inputting the corre-
sponding quadrant images are beneficial for improving the ac-
curacy of asymmetric TC wind radius estimation. TC wind
radius in different oceans has different characteristics with dif-
ferent difficulty levels to learn. A DL model for estimating
global TC wind radius was developed by combining separately
trained DL models in the North Atlantic, the Northwest Pacific,
the Northeast Pacific, and the Southern Hemispheres. The large
TC wind radius underestimation was reduced by using the modi-
fied MAE-weight loss function. In particular, the bias of R34
greater than 210 n mi at the SW quadrant is significantly im-
proved by 51.2%. The visualization of DL-TCR shows that our
models can learn the asymmetric structure of the TC, and the
area closer to the TC center, cloud with low brightness tempera-
ture, and TC spiral structure are the main factors possibly
influencing the model performance.

The global TC wind radii estimation models obtain MAEs
of R34 of 18.5, 19.1, 18.2, and 18.3 n mi for the NE, SE, SW,
and NW quadrants, respectively, MAEs of R50 of 11.1, 10.8,
10.9, and 10.6 n mi for the same quadrants and MAEs of R64
of 8.9, 9.7, 9.0, and 8.6 n mi for the same quadrants. The evalu-
ation results based on homogeneous test samples showed that
the global asymmetric TC wind radii estimation models surpass
existing satellite-infrared-image-based methods by 12.1%–35.5%
for asymmetric TC wind radii.

The structure of TCs is asymmetric, and studying TC asym-
metry may enhance the estimation of TC information, such as

TC spiral cloud rainbands, TC intensity, RMW, TC minimum
pressure, and so on. Our results demonstrate that DL-TCR 3
model can mine the asymmetric TC information from satellite
infrared images by introducing corresponding quadrant sub-
images. It provides an idea for the extraction of TC asym-
metric information.

Unfortunately, the HURSAT-B1 dataset stopped updating
in 2016, and GridSat-B1 can supplement TC data in recent
years (Knapp et al. 2011). Combining scatterometer, SAR,
and infrared satellite images may greatly enhance the accu-
racy of TC wind radius estimation. More TC data are helpful
to reduce the error of fewer sample data, such as the large TC
wind radius. In addition, continuing to explore the interpreta-
tion of deep learning and the integration of deep learning and
atmospheric or ocean science is essential. Adding physical
constraints or a priori knowledge to the DL model may be the
future direction of this research area.
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ABSTRACT: In this paper, a data-driven transfer learning (TL) model for locating tropical cyclone (TC) centers from
satellite infrared images in the northwest Pacific is developed. A total of 2450 satellite infrared TC images derived from
97 TCs between 2015 and 2018 were used for this paper. The TC center location model (ResNet-TCL) with added residual
fully connected modules is built for the TC center location. The MAE of the ResNet-TCL model is 34.8 km. Then TL is
used to improve the model performance, including obtaining a pretrained model based on the ImageNet dataset, transfer-
ring the pretrained model parameters to the ResNet-TCL model, and using TC satellite infrared imagery to fine-train the
ResNet-TCL model. The results show that the TL-based model improves the location accuracy by 14.1% (29.3 km) over
the no-TL model. The model performance increases logarithmically with the amount of training data. When the training
data are large, the benefit of increasing the training samples is smaller than the benefit of using TL. The comparison of
model results with the best track data of TCs shows that the MAEs of TCs center is 29.3 km for all samples and less than
20 km for H2–H5 TCs. In addition, the visualization of the TL-based TC center location model shows that the TL model
can accurately extract the most important features related to TC center location, including TC eye, TC texture, and con-
tour. On the other hand, the no-TL model does not accurately extract these features.

KEYWORDS: Tropical cyclones; Remote sensing; Deep learning

1. Introduction

Tropical cyclones (TCs) are intense weather processes gen-
erated over tropical oceans. After making landfall, TCs can
cause mudslides, flash floods, and other disasters, which can
cause great damage to people (Zhang and Li 2017; Fernandez
et al. 2006). Therefore, the monitoring and forecasting of TCs
is very important. In addition, TC intensity estimation, TC
tracking, and TC forecasting require accurate TC center loca-
tion (Olander and Velden 2007, 2019). Therefore, accurate
TC center location is crucial for forecasters and emergency
responders (Jaiswal and Kishtawal 2013; Hu et al. 2017; Lu
et al. 2017).

Satellite remote sensing is widely used to locate TC centers
because they have wide spatial and temporal coverage (Zheng
et al. 2019). Based on the sensor type, existing TC center loca-
tion methods are mainly classified as 1) infrared based (IR
based) (Velden and Hawkins 2002), 2) synthetic aperture
radar based (SAR based), and 3) microwave based (MIC
based).

Existing IR-based and SAR-based methods include 1) the
subjective empirical judgment method (Olander and Velden
2007; Dvorak 1975, 1984), 2) the threshold method (Fett and
Brand 1975; Chaurasia et al. 2010; Jin et al. 2014; You et al.
2022), 3) the spiral curve method (Jaiswal and Kishtawal 2011;
Lu et al. 2019; Shin et al. 2022), and 4) the cloud-derived wind
method (Wood 1994; Zheng et al. 2019, 2016; Cecil and Biswas
2017; Hu et al. 2019; Liu and Zhang 2022; Y. Wang et al. 2021).

Below, a concise overview of these methods is provided, with
their limitations highlighted.

The Dvorak (Dvorak 1975) method is the most popular
technique worldwide, which divides TCs into several classes
according to their intensity, each corresponding to several
special TC pattern maps. The forecaster obtains the location
of the TC center concerning the pattern map. Although the
method is widely used, it is highly subjective. Dvorak (Dvorak
1984) and Olander et al. (Olander and Velden 2007, 2019)
have optimized and automated the Dvorak method.

The threshold method is based on work by Fett and Brand
(1975) and Chaurasia et al. (2010) that noted the structure of
the central dense overcast of a TC is approximately elliptical.
After the TC intensity reaches a certain level, the central
dense overcast appears circular. The location of the TC center
can be judged by observing the morphological features of the
central dense overcast. The threshold method segments and
identifies the central dense overcast and defines the morpho-
logical center of the central dense overcast as the TC center.
This method requires complex preprocessing of the image
and does not apply to TCs without an obvious central dense
overcast.

The spiral curve method makes use of the vortex structure
of a TC, from which the TC center can be determined by ex-
tracting the spiral curve of the TC cloud system. This method
requires thresholding, contrast enhancement, histogram equal-
ization, Gaussian smoothing, and filtering satellite infrared im-
ages before matching the spiral curve and identifying the
spiral center as the TC center (Jaiswal and Kishtawal 2011;
Yurchak 2007). This method takes longer to calculate and
only applies to TCs with distinct spiral cloud bands.Corresponding author: Xiaofeng Li, lixf@qdio.ac.cn
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The cloud-derived wind method (Zheng et al. 2019, 2016;
Hu et al. 2019; Liu and Zhang 2022; Y. Wang et al. 2021) ex-
tracts vector wind information from cloud positions retrieved
from a time series of IR imagery. The wind field is then used
to determine the TC center.

SAR imagery (Jin et al. 2014) and microwave data (Zhang
et al. 2014; Hu et al. 2019) have been used for TC structural
analysis work. However, SAR systems are carried on polar-
orbiting satellites, which often can only observe a part of the
TC. Additionally, the spatial resolution of microwave data is
low, which poses challenges for TC center localization. IR in-
struments are found on geostationary satellites with a broad
look angle and high repeat coverage, making this format
more convenient for TC analysis and forecast work, despite a
lower spatial resolution than SAR.

In addition to some of the challenges identified above, the
IR methods also rely on computational processing that con-
verts satellite images into high-level artificial features (e.g.,
texture features, thresholding, edge detection) and requires
complex image preprocessing with long computation time. IR
imagery can return large errors for locating TC centers when
TCs are low intensity or have poorly defined structure. There-
fore, developing accurate and efficient methods for TC center
locations remains challenging.

A more recent computational processing development is
deep learning (DL). It has powerful data mining capabilities
(Li et al. 2020, 2022) and has been widely used for a variety of
applications in remote sensing in recent years, such as TC in-
tensity estimation (Chen et al. 2019; C. Wang et al. 2021;
Zheng et al. 2022), TC wind radius estimation (Zhuo and Tan
2021; Wang et al. 2022), identification and forecasting of
ocean phenomena, sea ice (Zhang and Li 2020; S. Zhang et al.
2022; X. Zhang et al. 2022), and other (Wang et al. 2022; Wu
et al. 2023). Yang et al. (2019) applied DL techniques to study
TC center locations. Wang et al. (2019) used the CNN-L
model to locate the TC center from infrared satellite images
and further improved the accuracy of the TC center location
by combining the TC identification model and the TC center
location model (Wang et al. 2020).

DL originated in computer vision, and with the increased
computational power, DL models have evolved toward
deeper and more complex directions (He et al. 2016). Along
with increased depth and complexity, the accuracy of DL
models utilized in various applications has also improved.
However, it is important to note that DL models have many
parameters, and the models can be easily overfitted if not sup-
ported by sufficient training data (Goodfellow et al. 2017).

Regarding the application of DL in TC research, for instance,
for tasks like TC intensity or wind field estimation, it is note-
worthy that the latest DL models like ResNet or GoogLeNet
(Zhuo and Tan 2021) exhibit lower performance compared to
older models like VGG-19 (Simonyan and Zisserman 2014).
This result is primarily due to the challenge that more complex
DL approaches face when dealing with limited training data.

To address this constraint in utilizing DL for TC analysis,
one strategy is to employ a transfer learning (TL) approach.
TL operates on the premise that the fundamental features
(e.g., edges and textures) extracted by DL models for diverse

tasks are shared or similar. DL models trained on extensive
datasets possess more robust capabilities for extracting these
fundamental features than those trained on smaller datasets.
TL serves as an efficient remedy for the issue of limited train-
ing data by transferring the robust feature extraction capabili-
ties from DL models trained on large datasets to other DL
models. Consequently, TL is an effective solution for address-
ing the challenge of working with small training datasets in
computational tasks. Li et al. (2019) proposed a visibility de-
tection method based on TL. Jeon et al. (2020) achieved high-
precision sea fog detection from GOCI images using TL. Han
et al. (2022) improved the accuracy of radar-based rainfall
nowcasting using TL. X. Zhang et al. (2022) used a TL ap-
proach for predicting internal wave amplitude that linked a
laboratory dataset (888 samples) to a smaller observational
dataset (121 samples) and improved prediction accuracy by
21% over the observational dataset alone. This result indi-
cates that TL approaches are promising for oceanographic ap-
plications where observational data are often limited.

The ImageNet dataset (Yang et al. 2020) (https://image-net.
org/about.php), which is commonly used in computer vision,
has more than 14 million training samples. Complex models
trained with the ImageNet dataset have powerful feature ex-
traction capabilities. In many studies, the fundamental fea-
tures may be used in other applications. For example, the
contour and texture feature extraction capability learned
from the ImageNet dataset can be used for TC contour and
texture extraction. More accurate features such as contours
and textures help locate the TC center. The approach pro-
posed in this paper will improve locational accuracy of TC
center identification by combining the greater effectiveness,
albeit lower accuracy, of simpler DL models in a limited ob-
servational data context with enhanced feature recognition
developed for other applications and integrated in using TL.
The approach proposed in this paper is the first time the TL
approach has been combined with DL for TC center
identification.

To solve the small number of data point issues, we first ob-
tain an ImageNet-based pretraining model. Then the model
parameters of the convolutional layer of the pretraining
model are transferred to the TC center location model. Fi-
nally, satellite infrared TC images are used for fine-tuning the
TC center location model parameters. Thus, the reuse of the
fundamental features is achieved, and the location accuracy
of the TC center is greatly improved.

Our contributions can be summarized as follows:

1) Improved ResNet model adds the residual fully con-
nected modules to better cope with the TC center loca-
tion problems.

2) The proposed idea of TL across disciplinary domains
transfers model knowledge from the computer vision do-
main to TC center location research, realizing the reuse of
the fundamental feature extraction capability and greatly
improving the model performance, and improving the ac-
curacy of weak-intensity TC center location.

3) The proposed TL idea enables the small sample TC cen-
ter location data to be applied to the large parameter DL
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model as well, and can better exploit the upper-performance
limit of the large parameter DL model.

The dataset and the DL-based models are introduced in
sections 2 and 3. After those, section 4 provides an analysis
and discussion of the model results. Finally, section 5 presents
the summaries.

2. Data and preprocessing

a. Geostationary satellite infrared imagery of TCs

The Himawari-8 (H-8) satellite, which was launched by the
Japan Meteorological Agency (JMA) in October 2014, pro-
vided the TC satellite infrared imagery used in this investiga-
tion. Three visible (0.47–0.64 mm), 3 near-infrared (0.86–2.3 mm),
and 10 thermal infrared (3.9–13.3 mm) bands were among the
16 bands of data provided by the Advanced Himawari Imager
(AHI) on board H-8. With a temporal resolution of 10 min
and a spatial resolution of 0.5–5 km, the H-8 imaging range
covers the Pacific Ocean (Bessho et al. 2016). Lu et al. (2019)
found that multichannel image fusion could improve the TC
center location accuracy. Therefore, in this paper, we select
channels 8 (6.2 mm), 13 (10.4 mm), and 15 (12.3 mm) with high
transmittance near the atmospheric window for the TC cen-
ter location study. As shown in Fig. 1, with the same color
bar, different channels show different information. For ex-
ample, compared to channels 13 and 15, channel 8 (water
vapor channel) image has a lower brightness temperature in
the areas with a large water vapor content. A total of 2450
images with 5 km spatial resolution were utilized to create a
dataset of 97 TCs over the northwest Pacific Ocean from
2015 to 2018.

b. Best track dataset of TCs

The best track dataset for TCs provided by the China Meteo-
rological Administration (CMA; https://tcdata.typhoon.org.cn/)
was used to extract TC images with their corresponding labels
(Ying et al. 2014). The location and intensity of TCs in the North
Pacific are specified at 6-h intervals. After 2017, for TCs making
landfall in China, the temporal resolution is improved to 3 h
during the 24 h before its landfall.

c. Data preprocessing

Data normalization can prevent model gradient explosion
and speed up model computation (Sola and Sevilla 1997). In
this paper, satellite infrared images are linearly transformed
to the interval [0, 1] by

y 5
x 2 xmin

xmax 2 xmin
, (1)

where xmin and xmax are the minima and maximum values of
the brightness temperature from bands 8, 13, and 15; y is the
normalized value limited to [0, 1].

After normalization, the TC images are randomly split 3:1:1
into training, validation, and test data (Table 1).

A 321 3 321 size image centered at the TC center locations
provided by the CMA best track dataset for each TC image

FIG. 1. Brightness temperature (K) images from different chan-
nels: (a) channel 8, (b) channel 13, and (c) channel 15, with a spa-
tial coverage of 1600 km3 1600 km.

WANG AND L I 1419DECEMBER 2023

Brought to you by INSTITUTE OF OCEANOLOGY, CAS | Unauthenticated | Downloaded 12/11/23 02:55 PM UTC

https://tcdata.typhoon.org.cn/


was extracted. Each training or validation image was reduced
from 321 3 321 to 224 3 224 pixels, randomly shifted by
0–30 pixels up, down, left, and right three times (Fig. 2). The
shift range was 0–30. Finally, we label the subimages with the
number and orientation of the shifted pixels. For example, if
an imaging center were shifted 5 pixels to the left and 10 pixels
up, the image would be labeled as (25, 10). It should be noted
that the test image was also cropped only once. These manipu-
lations resulted in an expanded dataset of 4410 training images,
1470 validation images, and 490 test images with a reduced im-
age size of 2243 224.

3. Deep learning model development

a. TC center location model configuration

Among DL models, the CNN model (LeCun et al. 2015) is
good at capturing spatial correlation in images and can extract
complex image features. CNN can accurately and quickly ex-
tract features such as TC contours, TC textures, and TC eyes.
Therefore, CNN models are often used to extract TC infor-
mation from satellite images. The CNN framework is often
designed as a feed-forward network that updates the model
weights by a back-propagation algorithm (LeCun et al. 2015).
It is made up of a fully connected layer, a pooling layer, and a
convolutional layer. The fully connected layer learns the intricate
nonlinear relationship between features and outputs, while the
convolutional layer extracts imagery features, and the pooling
layer smooths these features using filtering techniques. As a re-
sult, CNN avoids complex image preprocessing and feature engi-
neering (feature engineering refers to transforming, selecting,

creating, or preparing data features) (LeCun et al. 2015). The
Alexnet (Krizhevsky et al. 2017) was an improved model based
on the CNN framework that halved the error rate of target rec-
ognition. After that, VGG-19 (Simonyan and Zisserman 2014)
deepened the model depth using small convolutional kernels;
ResNet (He et al. 2016) further refined this approach by introduc-
ing a residual module that significantly deepened the model com-
plexity, allowing the model to generalize and handle more complex
tasks. Therefore, the ResNet model is selected as the base model
for the TC center location model developed in this paper.

The ResNet model was originally designed for image classi-
fication work in computer vision. The convolutional layer
structure of the ResNet model is kept unchanged so that the
model can inherit the feature extraction capability of the pre-
trained model using TL. Two modifications (ResNet-TCL-A
and ResNet-TCL-B) are introduced here to make it more
suitable for the TC center location (Fig. 3).

These are expanded upon below. First, the attention mecha-
nism originated from the study of human vision and has helped
to improve model performance in many studies (C. Wang et al.
2021; Wang et al. 2022). Therefore, ResNet-TCL-A adds the
spatial and temporal attention layers between the input layer
and the first convolutional layer. Second, each node of the fully
connected layer connects all nodes of the previous layer, giving
the model have stronger learning ability. Compared with the
commonly used DL models (i.e., VGGNet), the ResNet model
is not designed with a fully connected layer. Therefore, ResNet-
TCL-B adds 2 residual fully connected modules between the
last convolutional layer and the output layer.

Other than model architecture, the performance of the DL
model is positively correlated with the number of samples re-
quired for training. The amount of modeling data determines
the lower limit of model performance (Pan and Yang 2010).
The problem of an insufficient amount of training data has
been observed in many fields. This issue spurred the develop-
ment of TL techniques.

TL is an important tool to solve the problem of insufficient
training data and consists of two concepts: source and target
domains. The target domain is the knowledge that has to be
learned, and the source domain is the knowledge that already
exists. TL is the application of knowledge or patterns learned in
the source domain to the target domain (Pan and Yang 2010).

TABLE 1. Number of training, validation, and test data for the
DL-based TC center location model.

Train Validation Test

TS (17.1–32.4 m s21) 1227 296 277
H1 (32.5–42.2 m s21) 228 89 103
H2 (42.3–48.9 m s21) 126 35 39
H3 (49.0–57.6 m s21) 124 46 45
H4 (57.7–70.0 m s21) 58 22 24
H5 (.70.0 m s21) 7 2 2
Total 1470 490 490

FIG. 2. Random cut images: (a) original image (size: 3213 321) and (b)–(d) randomly cropped images (size: 2243 224).
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The requirements for the data needed for DL are relaxed by
TL. TL enables the reuse of the fundamental features, greatly
reducing the data and training time required for the target task
(Pan and Yang 2010; Hu et al. 2018).

In summary, once the model architecture has been established,
the next major step is to train the TC center location model using
the domain-adversarial TL (Fig. 4). The training steps of the TC
center location model (ResNet-TCL, ResNet-TCL-A, ResNet-
TCL-B) proposed in this paper include five steps:

First, the pretrained models (ResNet-pre) trained on the
ImageNet dataset, which consists of more than 14 million
training samples and is a well-known dataset containing natu-
ral images for various object recognition tasks (Yang et al.
2020), are obtained (https://image-net.org/about.php). ResNet-pre
follows the standard ResNet-50 structure, which includes 16 re-
sidual blocks, 49 convolutional layers, and 1 fully connected
layer. ReLU is the activation function for all layers except the
fully connected one. It is constructed using the Python Tensor-
Flow-Keras programming language. Pretrained models based
on the ImageNet dataset are offered by Keras, which can be di-
rectly downloaded without the need for retraining on the Im-
ageNet dataset (for details, see https://keras.io/api/applications/
resnet/).

Second, the TC center location model is built to locate the
TC center. It is important to note that the TC center location
model is used for all TCs, and the only similarity with the

pretrained model (model-pre) is in the convolutional layer
shown in Fig. 4.

Third, the weights of the convolutional layer in model-pre
are transferred to TC center location model, and the weights
of the TC center location model fully connected layer are ini-
tialized randomly.

Fourth, the TC center location dataset is used to fine-train
TC center location model. It includes fine-tuning the weights
of the convolutional layer and training the weights of the fully
connected layer. It means that TC center location model in-
herits the pretrain model’s powerful fundamental feature ex-
traction capability and improves the natural image feature
extraction toward TC feature extraction during the fine-tuning
process.

Fifth, the TL-based TC center location models are obtained.

b. Setup of experiments

First, the performance of the three model architectures for
the TC center location is compared in Table 2 to determine
the optimal model architecture suitable for the TC centers
location. Then, three sets of experiments (Table 2) are set up
in this paper to compare the model performance with and
without TL to explore the role of TL on the ResNet-TCL,
ResNet-TCL-A, and ResNet-TCL-B model.

Once the optimal model architecture (ResNet-TCL-B,
Table 2) has been established, the results in sections 4b–4d

FIG. 3. Architecture of ResNet-TCL, ResNet-TCL-A, and ResNet-TCL-B model for locating TC center (FC means the fully
connected layer).
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were all based on ResNet-TCL-B. In section 4b, the training
data were divided into four equal parts. Four experiments
were set up without TL, sequentially increasing the amount of
training data; meanwhile, another set of four experiments was
set up using TL with the same training data. How the size of

the training dataset and the utilization of TL impact the accu-
racy of determining the center location was evaluated.

Note that the hyperparameter selection for the ResNet-
TCL, ResNet-TCL-A, and ResNet-TCL-B models mentioned
above is as follows, aiming to achieve fast convergence and
high performance: 1) ReLU activation functions are used for
the convolutional and fully connected layers to expedite
model convergence. 2) The output layer employs a sigmoid
activation function, the most commonly used activation func-
tion in regression model output layers. 3) The loss function
chosen is mean-squared error (MSE), which closely aligns
with the calculation method for distance (x2 1 y2). 4) The op-
timization function is based on the adaptive moment estima-
tion (Adam) algorithm. 5) The initial learning rate for the
optimization function is set to 0.0005, and if the validation

FIG. 4. Modeling process of the ResNet model based on TL.

TABLE 2. Mean TC center location error (MAE) of ResNet-
TCL, ResNet-TCL-A, and ResNet-TCL-B models with and
without TL.

ID Method
No-TL

model (km)
TL model

(km)

ResNet-TCL ResNet 34.5 29.8
ResNet-TCL-A ResNet 1 attention 34.5 29.8
ResNet-TCL-B ResNet 1 residual FC 34.1 29.3
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group’s loss value does not improve for eight consecutive
epochs, the learning rate is increased by a factor of 0.5. Specif-
ically, the initial learning rate of 0.0005 was selected to pro-
vide stable convergence, and the learning rate schedule helps
prevent overfitting by adjusting the learning rate during train-
ing. This strategy was found effective during our experimenta-
tion. 6) The early stop function is applied during model
training. If the validation data loss value does not decrease
for over 10 epochs, the model’s training is stopped.

In addition, DL is often seen as a black box that does not
explain the mechanism of how it works. Therefore, DL model
interpretability is a key concern for scholars. The differences
between TL and no-TL models using interpretability tools is
discussed in section 4d.

4. Results and discussion

a. Modeling based on TL or no-TL

In this section, the results of the ResNet-TCL-based model
with/without TL are compared. The input satellite infrared
images and model output was the same for the model de-
scribed in this section. The difference is whether TL was being
used or not. Model performance is evaluated using the mean
absolute error (MAE):

MAE 5
1
N
∑
N

i51

�����������������������������������������������
(xtrue 2 xmodel)2 2 (ytrue 2 ymodel)2

√
, (2)

where xtrue and ytrue are the real locations of the TC center,
xmodel and ymodel are the location of the TC center located by
the DL model, and N is the number of test data.

Table 2 and Fig. 5 show that the MAE of the ResNet-TCL,
ResNet-TCL-A, and ResNet-TCL-B models are 34.5, 34.5,
and 34.1 km. The results of the ResNet-TCL and ResNet-
TCL-A models are comparable. It indicates that the attention
layer does not help in the TC center location. The perfor-
mance of the ResNet-TCL-B model without TL is 1.2% higher

than that of ResNet-TCL. This is because the ResNet-TCL-B
model has additional residual fully connected modules com-
pared to the ResNet-TCL model. The residual fully con-
nected modules allow the model to simulate complex tasks
better.

Figure 6 shows the loss curves of the ResNet-TCL model
for the training and validation data during the training pro-
cess. The solid and dashed lines are the variation of the
training and validation data loss values with the number of
training epochs, respectively. Red and blue represents the
ResNet-TCL model without and with TL, respectively. As
shown in Fig. 6, the ResNet-TCL model with TL converged
after 20 training epochs, while the ResNet-TCL model with-
out TL started to converge only after 40 training epochs.
Moreover, the loss values of the ResNet-TCL model with
TL for both training and validation data are consistently
lower than those of the ResNet-TCL model without TL. The
results show that TL can accelerate model convergence and
improve model performance.

ResNet-TCL, ResNet-TCL-A, and ResNet-TCL-B models
improved by 13.6% (29.8 km), 13.6% (29.8 km), and 14.1%
(29.3 km) after using TL. The ResNet-TCL-B model has the
lowest MAE and the largest performance improvement com-
pared to the model without TL. At the same time, the residual
fully connected modules of the ResNet-TCL-B model greatly
increase the model parameters. More trainable parameters
mean that the model requires more training data. TL can
effectively address model data requirements and enable it to
realize its upper-performance limit, especially for the ResNet-
TCL-B model, fully.

b. The effect of training data on the model

The effect that size of the training dataset has on TL model
performance is examined in this section. The best performing
ResNet-TCL-B model in section 4a is chosen for the TL-
based model in this section. The validation data and test
data are consistent with section 4a. First, the training data

FIG. 5. MAE of ResNet-TCL, ResNet-TCL-A, and ResNet-TCL-B
model with and without TL.

FIG. 6. Loss curve during the training of the ResNet-TCL model
with and without TL.
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(not randomly cropped) were divided into four equal parts,
and then each part was randomly cropped three times (as
described in section 3c) to expand the data. As shown in
Table 3, ResNet-TCL-1 to ResNet-TCL-1 were trained using
25%, 50%, 75%, and 100% of the data.

Table 3 and Fig. 7 show the effect of the amount of training
data on the TL and no-TL models. The ResNet-TCL-1 to
ResNet-TCL-4 mean location errors are 56.1, 43.8, 37.0, and
33.9 km when TL is not used. The model performance is im-
proved as the training data increase, at a decreasing rate.
When the training data were increased from 25% to 50%, the
model performance was improved by 21.9%. When the train-
ing data were increased from 75% to 100%, the model perfor-
mance improved by only 8.4%. The results show that the
model performance tends to increase logarithmically with the
number of training data.

The model performance of ResNet-TCL-1 to ResNet-TCL-4
with TL was improved by 15.8%, 15.3%, 14.6%, and 13.6% com-
pared to that without TL. The results show that TL can effec-
tively improve the model performance. In particular, the highest
improvement is achieved when the number of training data is
small, and model performance improvement only slightly de-
creases with the increase in training data. When the amount of
training data is large, such as ResNet-TCL-3, adding 25% of data
improves the model performance by 8.4%, and using TL im-
proves the model performance by 14.6%. The results show that
the improvement of model performance by strong fundamental
feature extraction capability is greater than that by increasing the
amount of data.

Figure 8 shows the location results of the ResNet-TCL-4
with/without the TL model. Weak-intensity TCs have incon-
spicuous structures that are difficult to locate. Strong TCs
have obvious TC eyes and structure and are more easily
located. As a result, the location error gradually decreases
with the increase in TC intensity. The ResNet-TCL-4 model
with TL has less MAE than the ResNet-TCL-4 model without
TL at each intensity. For example, the MAE for H1–H5 is
20.0 km, with less than 20 km for H2–H5.

c. Comparison with the latest technology

The performance of the ResNet-TCL-B model with TL in
locating the TC center was compared with the latest methods
listed in Table 4 in this section. The location accuracy of DL
models is generally comparable to or surpasses that of these
methods. However, the methods proposed by Zheng et al.
(2019), Lu et al. (2019), Wang et al. (2020), Shin et al. (2022),
and Liu and Zhang (2022) lack publicly available source code,
making it impossible to compare them using the same dataset.
Although the comparison in Table 4 is not equitable, the re-
sults show that our model has an overall good accuracy by the
existing standard. On the other hand, the DL models from
Wang et al. (2019) were retrained using the same dataset as
this paper (Table 4). Compared with the DL model of Wang
et al. (2019), the ResNet-TCL-B model with TL performs more ac-
curacy. The VGG-19 model has also been tested with TL. The
MAE of VGG-19 without/with TL is 34.8 and 31.4 km, respec-
tively, which is higher than the ResNet model. The results show the
effectiveness of the TL-basedDLmodel proposed in this paper.

TABLE 3. TC center location results are based on different amounts of training data.

ID The amount of training data No-TL model (km) TL model (km)

ResNet-TCL-1 367 3 3 (25%) 56.1 47.2
ResNet-TCL-2 734 3 3 (50%) 43.8 37.1
ResNet-TCL-3 1101 3 3 (75%) 37.0 31.6
ResNet-TCL-4 (ResNet-TCL-B) 1470 3 3 (100%) 33.9 29.3

FIG. 7. TC center location results based on different amounts of
training data. FIG. 8. MAE of the ResNet-TCL-4 model with TL.
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d. Visualization and interpretation of the ResNet-TCL
model

ADLmodel is often thought of as a black box. In this black
box, DL models extract features from images and learn the
laws from the features to the target task. However, DL/TL re-
sults ultimately must be related to physical processes. There-
fore, the interpretability of DL models has become a popular
research topic. However, the existing DL model for the TC
center location study (Yang et al. 2019; Wang et al. 2019;
Wang et al. 2020) neglects the interpretation of the model.
Therefore, the ResNet-TCL-B model will be analyzed using
DL interpretability methods. In this section, the aim is to
1) emphasize why TL-based deep learning models excel in TC
center location and 2) identify potential error sources.

To our knowledge, the most popular and efficient techni-
ques for understanding DL models are feature maps and heat
maps. The feature map shows the features extracted from the
input image by the convolutional layer. The input image impact
on the model output can be seen in the heat map. Heat map
techniques such as activation maximization analysis (Toms et al.
2020), network layer correlation propagation (Andersson et al.
2021), and sensitivity analysis (Espeholt et al. 2022) have been
widely used in the field of geomatics to provide insight into the
internal mechanisms of DL models. For example, Toms et al.
(2020), based on the heat map, found that the most relevant re-
gion of the ENSO phase category identified by the DL model is
consistent with the Niño-3.4 region. This result validates that
the working mechanism of DLmodels is consistent and comple-
mentary with existing knowledge, offering the possibility of DL
feeding atmospheric ocean science. The toolboxes developed
by Kotikalapudi (Kotikalapudi et al. 2017) and Lundberg
(Lundberg and Lee 2017) bring together a variety of model in-
terpretable methods. Such toolboxes can be used to invoke in-
terpretable methods to obtain feature maps and heat maps. It is
important to note that most of the existing DL interpretable
methods target classification problems, not regression problems.
The saliency map method, which calculates the effect of pixel
changes in the input image on the results, is used in this paper
to obtain the heat map.

The ResNet-TCL-B model has 49 convolutional layers, and
the deeper the convolutional layer, the more abstract the fea-
tures extracted. Therefore, this section shows the feature
maps extracted from the third and thirteenth convolutional

layers. The third and thirteenth convolutional layers have 64
and 128 convolutional kernels, respectively, so 64 and 128 fea-
ture maps are extracted, respectively.

Figures 9a and 9b show the feature maps extracted from
the third convolutional layer in the ResNet-TCL-B model;
Figs. 9c and 9d show the feature maps extracted from the
thirteenth convolutional layer in the ResNet-TCL-B model.
The feature map shown in Fig. 9a blurs the difference be-
tween TC clouds and sea in the input image and does not
extract important fundamental features for the TC center
location. The feature maps in Fig. 9b show the texture and
contour features of the TC. It is seen in Fig. 9b that the area
close to the TC center and the TC contour features are ex-
tracted. Figure 9c shows the texture features and contour
features of the TC. The feature maps in Fig. 9d become ab-
stract, and the features of the TC eye can be seen in some of
the feature maps.

The features extracted in Figs. 9b and 9c are more similar.
It shows that the no-TL model cannot learn the fundamental
features of the TC at the shallow convolutional layers and
only learns the important fundamental features of TC (tex-
ture, contour, etc.) at the deeper layer. On the other hand,
the TL model can learn the important fundamental features
of the TC at a shallow convolutional layer so that more con-
volutional layers can be used to extract further and learn the
relationship between the fundamental features and the TC
center.

It is as if three steps are needed to solve a problem. The
transferred learning model already has the empirical knowl-
edge from step 1 to step 2 and only needs to go from step 2 to
step 3. On the other hand, a no-TL model needs to go from
step 1 to step 2 to step 3, and errors from step 1 to step 2 af-
fect the result of step 3. TL enables the migration of the fun-
damental feature extraction capabilities, thus enabling faster
and better problem-solving.

Figure 10 shows the location error and heat maps for differ-
ent intensity images. The errors on the saliency heat maps in
the middle and right columns of Fig. 10 are the location errors
of the TL and no-TL models. The model location error is
small for H1–H5 TC with obvious TC eyes. For the lower-
intensity TS TC, the model location error is larger. It is mainly
because low-intensity TCs do not have significant circulation
characteristics. Therefore, most TC center location methods
cannot accurately locate the center with low intensity. For

TABLE 4. Comparison of the performances of our model with TL and other techniques in locating TC center from satellite infrared
image.

Literature Method Dataset MAE

Zheng et al. (2019) Cloud-derived wind Cloud-derived wind }

Lu et al. (2019) Fitting TC spiral TCs from 2012 to 2016 54 km
Wang et al. (2019) Deep learning TCs from 2015 to 2018 54 km
Wang et al. (2020) Deep learning TCs from 2008 to 2011 and 2017 to 2019 Longitude 0.2378, latitude 0.2378
Liu and Zhang (2022) Cloud-derived wind 3 TC cases 41 km
Shin et al. (2022) Fitting TC spiral TCs from 2011 to 2019 0.388
Wang et al. (2019) Deep learning Same test TC data from 2015 to 2018 39.1 km
VGG-19 model 34.8 km (without TL), 31.4 km (with TL)
Our model 29.3 km
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FIG. 9. Feature maps are generated from different layers in the ResNet-TCL-B model (the latitude–longitude scale
of input TC case is 8.808–24.808N, 115.008–131.008E). (a) Third convolutional layer in ResNet-TCL-B model with TL.
(b) Third convolutional layer in ResNet-TCL-B model without TL. (c) Thirteenth convolutional layer in ResNet-
TCL-B model with TL. (d) Thirteenth convolutional layer in ResNet-TCL-B model without TL. The input data are
three-channel (channels 8, 13, and 15)H-8 images (Fig. 1).
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operational activities, the wind field simulated by the numeri-
cal model is usually combined to assist in locating the TC
center.

In the following, the reasons for the poor location results of
the DL model will be analyzed using saliency heat maps. In
Fig. 10, the left column is the input image, and the red dots
are the TC center locations. The center column is the heat

map of the no-TL model. The right column is the heat map of
the TL model. The values of the heat map range from 0 to 1.
The larger the value, the greater the effect of the change in
that point on the result.

In the H1–H5 images with obvious TC eyes, the region of
attention of the TL model is concentrated near the TC eyes,
while the region outside the TC eyes is almost 0. It indicates

FIG. 10. Original images and saliency heat maps of TS (15.258–26.408N, 125.708–136.858E), H1
(25.108–36.258N, 122.708–133.858E), H2 (11.658–22.808N, 117.858–129.008E), H3 (9.808–20.958N,
137.208–148.358E), H4 (10.908–22.058N, 131.458–142.608E), and H5 (15.208–26.358N, 118.208–
129.358E) of the TL and no-TL models. (top to bottom) The samples of H5 to TS. (left) Input
image, (center) saliency heat maps of no-TL model, and (right) saliency heat maps of TL model.
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that the TL model learns the feature of TC eyes, which is the
most important for the TC center location. However, the no-
TL model focuses on more scattered regions, including image
edges and TC peripheral cloud areas, in addition to the TC
eye, which interferes with the TC center location. Especially
for the H3 image, the no-TL model does not extract the fea-
tures of the TC eye, which leads to a large location error. It is
noted that for strong-intensity TCs (H1–H5) with clear TC
eye, the ability to accurately capture the TC eye is considered
a potential error source.

The DL model relies on recognizing the TC contour and
morphology to locate the TC center in TS images where the
TC eye is not obvious. The attention of the TL model is fo-
cused on the left side of the image where the TC eye is lo-
cated, while the opposite is true for the no-TL model. The
results show that for weaker-intensity TCs without distinct
eye features, the extraction of features related to TC structure
and spiral bands becomes a potential error source. The TL
model has better feature extraction ability and feature learn-
ing ability and can accurately extract the most important fea-
tures associated with the TC center location.

In summary, the interpretability analysis of DL models is
essential. It can assist us in identifying potential error sources
in TC center location and enhance our understanding of TCs.
In the images with TC eyes, the TL model focuses on the re-
gion of TC eyes, which is consistent with the perception of the
threshold method to locate the TC center. In images without
TC eyes, ResNet-TCL-B can also locate the TC center more
accurately by relying on TC morphological features, solving
the drawback that traditional methods cannot be used for im-
ages without obvious TC eyes. The results show that the fun-
damental feature extraction capability from other fields can
be transferred to the study of the TC center location, and the
features related to the TC center can be extracted more accu-
rately to achieve high-accuracy TC center location.

5. Conclusions

A limited availability of training data makes application of
newer, large-parameter DL models to the TC location prob-
lem difficult. Instead, simpler DL models must be used, which
imposes a minimum MAE on the accuracy of TC centers lo-
cated with such methods. In this paper, a novel approach has
been presented, which uses TL to transfer into the DL model
information about structures and features in the image, which
enhance rate of DL model convergence and improve location
accuracy.

Adding the residual full connectivity modules in front of
the output layer of the ResNet-TCL model improves the
model performance. Compared with the ResNet-TCL model,
the ResNet-TCL-B model can locate the TC center more ac-
curately. The ResNet-TCL-B model improves the location ac-
curacy by 1.2% over the ResNet-TCL model. The TL-based
ResNet-TCL-B model improves the location accuracy by
14.1% (29.3 km) over the no-TL model. The performance of
the ResNet-TCL model based on the domain knowledge of
TC center location increases logarithmically with the amount
of training data. When the number of samples is relatively

small, increasing the number of training samples can greatly
improve the model location accuracy. When the training sam-
ples are large, the benefit of increasing the training samples is
smaller than the benefit of using TL. The visualization of the
ResNet-TCL model shows that the TL model can accurately
extract the most important features related to TC center loca-
tion, including TC eye, TC texture, and contour.

The MAE of the ResNet-TCL-B model with TL for all TC
cases in the test group is 29.3 km, 20 km for H1–H5 TCs, and
less than 20 km for H2–H5 TCs. The location accuracy of the
ResNet-TCL-B model with TL has improved by 15%–45%
compared with the latest TC center location methods based
on satellite infrared images. It can provide data support for
TC monitoring.

The data available for TC research are much less than that
for computer vision and other fields. Therefore, the cross-
domain TL idea developed in this paper provides ideas for
small-sample TC information extraction and modeling and
can be used in other TC monitoring research, such as TC in-
tensity estimation and TC wind radius estimation.

This paper uses the northwest Pacific Ocean for piloting
and shows the potential of TL modeling. However, TCs in dif-
ferent seas have different characteristics, and a study examin-
ing a global TC dataset should be considered in the future.
Further investigation into the interpretability of DL and its in-
tegration with TC research is crucial, and future studies in this
field may focus on adding physical limitations or prior knowl-
edge to DL models.
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Abstract
This paper developed a deep learning (DL) model for forecasting tropical cyclone (TC) intensity in
the Northwest Pacific. A dataset containing 20 533 synchronized and collocated samples was
assembled, which included ERA5 reanalysis data as well as satellite infrared (IR) imagery, covering
the period from 1979 to 2021. The u-, v- and w-components of wind, sea surface temperature, IR
satellite imagery, and historical TC information were selected as the model inputs. Then, a
TC-intensity-forecast-fusion (TCIF-fusion) model was developed, in which two special branches
were designed to learn multi-factor information to forecast 24 h TC intensity. Finally, heatmaps
capturing the model’s insights are generated and applied to the original input data, creating an
enhanced input set that results in more accurate forecasting. Employing this refined input, the
heatmaps (model knowledge) were used to guide TCIF-fusion model modeling, and the
model-knowledge-guided TCIF-fusion model achieved a 24 h forecast error of 3.56m s−1 for
Northwest Pacific TCs spanning 2020–2021. The results show that the performance of our method
is significantly better than the official subjective prediction and advanced DL methods in
forecasting TC intensity by 4% to 22%. Additionally, compared to operational approaches,
model-guided knowledge methods can better forecast the intensity of landfalling TCs.

1. Introduction

Tropical cyclones (TCs) are extremely powerful
weather phenomena originating in tropical oceans,
potentially unleashing catastrophic devastation upon
coastal regions (DeMaria 2009, DeMaria et al 2014,
Cangialosi et al 2020). The significant hazards TCs
pose include severe flooding, destructive winds,
and coastal inundation caused by sorm surges, all
of which substantially threaten human lives and
property (Zheng et al 2015, 2019, Klotzbach et al
2018, Wang and Toumi 2021, Bhatia et al 2022, Li
et al 2023). Hence, precise TC intensity forecasts are
pivotal in helping individuals take proactive precau-
tions and mitigate potential losses (Woodruff et al
2013, Landsea and Cangialosi 2018, Yu et al 2020,
Wang and Toumi 2022, Zhang et al 2023, Wang and
Li 2023a).

The traditional methods for forecasting TC
intensity can be classified as (1) dynamical forecast
models (Ma 2014), (2) statistical models (Emanuel
1986, DeMaria and Kaplan 1994, 1999, Knaff et al
2003, DeMaria et al 2005, DeMaria 2009, Chen et al
2011).

The dynamical model method is the primary
approach for TC intensity forecasting (Saha et al 2014,
Bao et al 2022). This method utilizes a set of mathem-
atical equations to represent the fundamental prin-
ciples governing atmospheric motion and thermody-
namics (Weber 2003, Zheng et al 2017, 2021, 2023,
Shen et al 2022). By assimilating extensive observa-
tional data into the forecasting models, a dynam-
ical model can be initialized to forecast the evol-
ution of TC intensity. The dynamical models con-
sider a range of atmospheric and oceanic parameters,
including sea surface temperatures (SSTs), humidity,

© 2024 The Author(s). Published by IOP Publishing Ltd
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wind patterns, and pressure systems, which influence
the behavior of TCs. Nonetheless, recent advances
in computing technology and data assimilation tech-
niques have significantly improved the accuracy of
dynamical models, resulting in a considerable reduc-
tion in the forecast error for TC tracks, while the pro-
gress in intensity forecasting has been relatively slow
(Landsea and Cangialosi 2018).

Statistical methods for TC intensity forecast-
ing rely on historical observational data to develop
mathematical models that capture the relationships
between various meteorological parameters and the
evolution of TC intensity (DeMaria and Kaplan 1994,
1999, DeMaria et al 2005, DeMaria 2009). These
models often involve regression analysis, time series
analysis, and other statistical techniques (Knaff et al
2003). The advantage of statistical methods lies in
their simplicity and ease of implementation, partic-
ularly when real-time data is limited. However, these
models are constrained by the assumption that his-
torical patterns will continue to hold, limiting their
effectiveness in forecasting extreme events, such as
rapid intensification or sudden weakening of TCs
(Lin et al 2009, Sandery et al 2010, DeMaria et al
2014). They are often combined with other methods
to enhance overall forecast accuracy.

However, the intensity changes of TCs are influ-
enced by many factors, such as the intricate interac-
tions between the atmosphere and the ocean and the
broader atmospheric conditions at play. These factors
are complex and difficult to explain. Traditional
methods cannot effectively capture the non-linear
processes of TCs. Deep learning (DL) has emerged
in response to this challenge. In recent years, there
have been significant advancements inDL technology
(Li et al 2020, 2022, Wang and Li 2023b), which has
been successfully applied to various forecasting tasks
(Lagerquist et al 2020, Zheng et al 2020, Ravuri et al
2021, Wang et al 2022, 2023, Zhang and Li 2022, Ren
and Li 2023) and is currently being explored for TC
intensity forecasting (Baik and Paek 2000, Pan et al
2019, Xu et al 2021, 2022, Yuan et al 2021, Zhang
et al 2022, Ma et al 2023, Meng et al 2023b). DL
algorithms, such as convolutional neural networks,
can process vast amounts of data and identify com-
plex patterns within meteorological datasets. This
makes them particularly well-suited for handling the
intricate and nonlinear characteristics of TC intens-
ity forecasts (TCIFs). By learning from historical TC
data, DL models can capture subtle relationships and
nonlinear factors that traditional forecasting meth-
ods may overlook. With continuous learning and
improvement from new data, DL methods demon-
strate adaptability and flexibility in handling chan-
ging atmospheric conditions.

In recent years, DL has shown high accuracy
and efficiency in the field of TCIFs. Baik and Paek
(2000) designed a TC intensity forecasting model
based on a multi-layer perceptron for the 12–72 h

period, which resulted in a 7%–16% reduction in
forecast errors compared to statistical methods. Pan
et al (2019) and Yuan et al (2021) considered
the time series dependency in intensity forecasting
based on long short-term memory (LSTM) mod-
els (Graves 2012), leading to significant improve-
ments in forecast accuracy. Xu et al (2021) utilized
inputs from Statistical Hurricane Intensity Prediction
Scheme(SHIPS) and Dynamical Statistical Hurricane
Prediction (DSHP) statistical methods, combining
them with a multi-layer perceptron to reduce fore-
cast errors by 5%–22%. Furthermore, Xu et al
(2022) and Meng et al (2023b) introduced the
three-dimensional structure of the TC wind field
and constructed the spatial attention fusing network
(SAF-NET) TC intensity forecasting model, result-
ing in enhanced forecasting performance. Zhang et al
(2022) incorporated the two-dimensional sea sur-
face field into the three-dimensional atmospheric
field, augmenting the model with LSTM modules
to improve its ability to extract temporal informa-
tion. Ma et al (2023) introduced Gated Recurrent
Unit (GRU) modules during the modeling process
to further enhance the model’s capability to extract
temporal information, resulting in improved forecast
accuracy.

Although these DL methods have achieved
remarkable accuracy inTC intensity forecasting, three
key issues remain to be addressed. Firstly, satellite
infrared (IR) imagery is commonly utilized for rapid
intensification forecasts due to its strong correla-
tion with TC intensity changes (Adler and Rodgers
1977, Steranka et al 1986, DeMaria and Kaplan 1994,
1999, DeMaria et al 2005, Su et al 2020), yet existing
DL methods only have to consider atmosphere and
ocean factors from reanalysis data and ignore satellite
IR imagery. Secondly, the TC process is inherently
complex, and the interactions among multiple input
factors are intricate. Available networks often extract
features individually for each factor or use simple
concatenation, leading to limited capability in learn-
ing the interplay between these factors. Lastly, in the
three-dimensional atmospheric field data, besides the
signals strongly correlated with TC intensity, numer-
ous factors interfere with the model’s forecasts, which
have been previously overlooked during themodeling
process.

In this paper, the goal is to achieve accurate
24 h TCIFs, which is defined by the 2min max-
imum sustained wind speed. The contributions of
this study are threefold: firstly, it demonstrates the
positive impact of utilizing satellite IR imagery on
TC intensity forecasting performance. Secondly, it
designs feature fusion modules for different factors,
enhancing the DL model’s capacity to learn and rep-
resent interactions between them. Lastly, by lever-
aging DL model knowledge (MK) to guide the mod-
eling process, the study focuses the model more on
signals closely associated with TC intensity evolution,
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resulting in improved model performance and train-
ing efficiency.

Section 2 introduces the data and methods. The
performance of 24 h TCIF models analysis and dis-
cussion are given in section 3. The conclusion is given
in section 4.

2. Data andmethods

2.1. Data
The TC IR images used in this study were from
the Gridded Satellite Data (GridSat-B1). GridSat-B1
data were created to facilitate to use of geostationary
data (Knapp et al 2011). GridSat-B1 data are grid-
ded International Satellite Cloud Climatology Project
B1 data on a 0.07◦ latitude equal-angle grid. Satellites
are merged by selecting the nadir-most observations
for each grid point. GridSat-B1 offers IR satellite
imagery with a temporal resolution of 3 h, covering
the period from 1981 to the present. The imagery
includes wavelengths of 11, 0.6, and 6.7µm.However,
due to the absence of 0.6 and 6.7µm band images
before the year 2000, this study only utilized the
11µm band images.

The model inputs included environmental vari-
ables provided by ERA5 reanalysis data (Hersbach
et al 2023), comprising the u- (U), v- (V), and w-
(W) components of wind and SST. These variables
strongly correlate with TC intensity (Baik and Paek
2000, Vecchi and Soden 2007, Tang and Emanuel
2010). To represent the vertical structure of TCs, four
isobaric levels at 200, 500, 850, and 1000 hPa were
chosen. The data collected spans from 1979 to 2021,
with a spatial resolution of 1◦ and a temporal resolu-
tion of 6 h.

The Best Track dataset for TCs provided by the
Shanghai Typhoon Institute, Chinese Meteorological
Administration (STI/CMA) was used to label and
extract TC samples (Ying et al 2014). The track and
intensity of TC are recorded every 3 or 6 h in this data-
set. The TC data were collected from 1979 to 2021.
The data from 1979 to 2019 were partitioned, with
90% allocated for training and 10% reserved for val-
idation. The data from 2020 and 2021 were utilized as
independent test data.

For details on data preprocessing, please refer to
the supporting information section S1.

2.2. Design of the TCIFmodel input data
The input factors of the TCIF model can directly
impact the results of TCIFs. Dynamical model usu-
ally consider atmospheric and oceanic elements.
However, most existing DL-based methods mainly
consider atmospheric factors (such as historical TC
information (HIS), U, V, W), while Zhang et al
(2022) and Ma et al (2023) have included oceanic
factors (SST). The studies indicate that IR data can
depict TCmorphology and convective activities and is
commonly used for rapid intensification forecasting

(DeMaria andKaplan 1994, 1999, DeMaria et al 2005,
Su et al 2020). However, no DL-based TC intensity
forecasting method has incorporated IR. U, V, W,
SST, and IR into the input factors of the TCIF model.

The model architecture for the input factor selec-
tion experiments is depicted in figure 1. For example,
when the input factors areU, V,W, and HIS (supple-
mentary table 1), the model exclusively comprises the
U, V,W, and HIS branches (supplementary figure 4,
consists of gray arrows). However, with the addition
of the input IR, the model integrates the IR branch
(supplementary figure 4, consists of gray and blue
arrows).

In addition, the arrangement of data sequences
plays a pivotal role in influencing the computational
methodology of convolutional kernels. For details on
the arrangement of data sequences, please refer to the
supporting information in section S2. As shown in
supplementary table 2, compared with the ‘x–y–z–
t’ arrangement, the ‘x–y–t–z’ arrangement leads to a
2.5% reduction in error. Therefore, all experiments in
this paper use the ‘x–y–t–z’ data arrangement.

2.3. Design of the TCIFmodel architecture
In previous studies, a common approach involved
using a multi-branch network structure (24 h TCIF-
basic consists of blue arrows and blocks in figure 1)
to independently extract each factor’s features and
concatenate them at the fully connected layer. The
structure of the block is illustrated in supplementary
figure 2.

Two improvements have been made to the basic
framework shown in figure 1. The first improve-
ment involves adding a feature fusion branch to the
24 h TCIF-merge model (consisting of blue and green
arrows and blocks in the main paper figure 1). The
second improvement is the addition of an extra input
branch to the 24 h TCIF-fusion model (consisting of
blue, green, and gray arrows and blocks in the main
paper figure 1). For details on model architecture
design concepts and performances of different model
architectures, please refer to the supporting inform-
ation section S3. Finally, the TCIF-fusion model was
confirmed for 24 h TC intensity forecasting.

In these models, the output of the TCIF model is
the 24 h TC intensity, the linear activation function is
employed in the output layer, while ReLU is used for
the other layers. The optimization function selected
is Adam, while the loss function employed is mean
absolute error (MAE).

2.4. Design of MK-guided training strategy
Besides the signals strongly correlated with TC
intensity in the three-dimensional atmospheric data,
numerous spurious signals exist that can potentially
interfere with the model’s forecasts, previously over-
looked during the modeling process.

In DL model interpretability has been a focal
point of research. Among various interpretability
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Figure 1. The architecture of TCIF-basic, TCIF-merge, TCIF-fusion model.

methods, gradient-weighted class activationmapping
(Grad-CAM) (Selvaraju et al 2020) allows the compu-
tation of gradients from the model’s output back to
its input, thus generating heatmaps. The Grad-CAM
method has been employed to interpret DL mod-
els for TC study (Baek et al 2022, Tian et al 2022).
These heatmaps signify the relevance and importance
of input features to the model’s output, with regions
exhibiting higher values deemed crucial by the DL
model for TC intensity forecasting. It is referred to
as ‘MK’.

As shown in figure 2, the heatmap assigns higher
weights to regions with high wind speeds, while
regions characterized by lower wind speeds and areas
deemed insignificant by other models receive com-
paratively lower weights. Specifically, the areas with
higher weights in the U and V heatmaps are situ-
ated near the TC center, where strong wind speeds
are predominant. Notably significant weight regions
in the W heatmap are observed both within the
TC eye and in its peripheral areas. The SST heat-
map closely mirrors the genuine SST distribution.
Furthermore, regions exhibiting higher weights in
the IR heatmap correspond to the TC’s eye and its
spiral bands. A new dataset is generated through an
element-wise multiplication of the original data with
the absolute values of the heatmap (figure 2). This
novel dataset empowers the model to strengthen the
extraction of features in regions exhibiting high wind
speeds.

In light of this, a method is proposed that effect-
ively utilizes ‘MK’ to guide the modeling process.
The proposed approach involves the following steps

(supplementary figure 3): (1) training a TCIF-fusion
model, denoted as the TCIF-initial model; (2) utiliz-
ing Grad-CAM to produce heatmaps for the training,
validation, and test datasets; (3) creating a new input
data by element-wise multiplication of the absolute
value of the heatmaps with the corresponding ori-
ginal input data points (figure 2); (4) training a
new TCIF-fusion model using the augmented data-
set, thereby obtaining a TCIF-fusion model (the MK-
guided TCIF-fusion model) that is guided by the
acquired MK. Note that both the TCIF-initial Model
and the MK-guided TCIF-fusion model employ the
same training, validation, and test datasets, ensuring
the absence of any data leakage issue.

3. Results and discussion

3.1. The roles of SST and IR images in TCIFs
TCs are complex weather phenomena influenced by
multiple factors. Most existing DL-based methods
have mainly considered atmospheric factors (such as
HIS, U, V, W), while Zhang et al (2022) and Ma
et al (2023) have included oceanic factors (SST). The
studies indicate that IR data can depict TC morpho-
logy and convective activities and is commonly used
for rapid intensification forecasting.However, noDL-
based TC intensity forecasting method has incorpor-
ated IR. This section compares the performance of
the MK-guided TCIF-fusion model under varying
inputs. As shown in table 1 and figure 3(a), the basic
model employs HIS, U, V, and W as inputs while
introducing SST and IR inputs individually. Table 1
and figure 3(a) depicts the average absolute errors of
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Figure 2. The process of MK-guided generation of new input data. The deep blue dots in the SST represent processed NaN values,
please refer to the supplementary information section S1 for details.
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Table 1. The mean absolute errors (MAE, m s−1) over the
Northwest Pacific test data (2020–2021) of 24 h TC intensity
forecasting with different model inputs.

ID Input
Model (data
structure) MAE

TCIF-1 HIS, U, V,W MK-guided
TCIF-fusion

3.87

TCIF-2 HIS, U, V,W, SST 25× 25× 5× 3.74

TCIF-3 HIS, U, V,W, IR 3.69
TCIF-4 HIS, U, V,W, IR, SST 3.56

the model’s 24 h forecasts for test data spanning 2020
to 2021.

When input into HIS, U, V, and W, the MK-
guided TCIF-1 model registers an error of 3.8m s−1.
However, with the integration of SST and IR inputs,
the model’s forecast errors are notably reduced
to 3.74m s−1 (MK-guided TCIF-2 model) and
3.69m s−1 (MK-guided TCIF-3 model), respectively.
The MK-guided TCIF-4 model, incorporating HIS,
U, V, W, IR, and SST inputs in concert, achieves
even further error reduction, yielding an error of
3.56m s−1 and a performance improvement of 8.0%
(compared with MK-guided TCIF-1).

These findings underscore a significant observa-
tion: apart from wind speed components directly
correlating with intensity, incorporating SST and IR
inputs greatly enhances the model’s performance in
forecasting TC intensity.

3.2. The roles of MK in TCIFs
The original input data contains extraneous ‘noise’
beyond the information relevant to TC intensity,
which could impede the model’s learning process.
Introducing MK can effectively reduce the impact
of ‘noise’ on the model. For details on the method
of introducing model knowledge, please refer to the
Method section.

The progression of model training is represented
by the loss curve presented in figure 3(b). As shown
in figure 3(b), the solid and dashed red lines denote
the model’s training and validation loss values with
the original input data. Correspondingly, the solid
and dashed blue lines represent the training and val-
idation loss values of the MK-guided TCIF-fusion
model. The results underscore that the TCIF-fusion
model without MK-guided converges after 40 train-
ing epochs, while the MK-guided TCIF-fusion model
achieves convergence within just 20 training epochs,
displaying even lower loss values.

Figures 3(c) and (d) illustrate the forecasts of
the TCIF-fusion model without MK-guided and the
MK-guided TCIF-fusion model against the test data-
set. Notably, the MK-guided TCIF-fusion model
exhibits a higher correlation (0.92) and lower MAE
(3.56m s−1). Figures 3(c) and (d) demonstrate that
incorporating MK mitigates the model’s tendency to

underestimate high wind speed samples. The results
strongly indicate that incorporating MK contributes
to enhanced model performance.

3.3. Results analysis
Forecasting results are compared between the MK-
guided TCIF-fusion model, official subjective fore-
casts (table 2), dynamical models, and DL-based
methods. As a result, superior or equivalent forecast-
ing performance is achieved. The STI/CMA annu-
ally evaluates various operational dynamical mod-
els for forecasting Northwest Pacific TCs (Chen et al
2022, Yang et al 2023). Official subjective forecasts
fromCMA, JapanMeteorological Agency (JMA), and
Joint Typhoon Warning Center (JTWC), as well as
dynamical model forecasts from European Centre
for Medium-Range Weather Forecasts (ECMWF)
and National Centers for Environmental Prediction
/ Global Forecast System (NCEP/GFS), are listed
in table 2 (Chen et al 2022, Yang et al 2023).
The results reveal that both the DL-based methods
and our proposed approach outperform traditional
methods by 4%–22%, underscoring the substantial
potential of DL in the TCIF. In contrast to other
DL-based methods, the approach proposed in this
paper (1) adds satellite imagery as input, (2) pri-
oritizes the learning of interactions among factors,
and (3) employsmodel-guided knowledge formodel-
ing. The performance of the MK-guided TCIF-fusion
model is more than 4% higher than that of other
deep learning methods, proving that the method is
advanced.

Additionally, the forecasting results of the MK-
guided TCIF-fusion model have been compared
across different TC intensities (figure 4). Figure 4(a)
depicts a bar chart illustrating the forecast errors
for various intensity levels. The forecast error of our
model increases with higher TC intensity levels. In
figure 4(b), different TC intensity occurrence fre-
quencies are showcased in both observations and
model forecasts. Notably, the occurrence frequen-
cies of distinct intensity of TCs are quite compar-
able between our model and the observations. Our
model tends to make fewer forecasts for TCs of trop-
ical storm (TS) and SuperTY intensity andmore fore-
casts for tropical depression (TD) (10.8–17.1m s−1),
severe tropical storm (STS) (24.5–32.6m s−1), and
typhoon (TY) (32.7–41.4m s−1) intensity.

The frequency distribution illustrated in
figure 4(b) implies that our model might misclas-
sify TS (17.2–24.4m s−1) TCs as TD and SuperTY
(>51.0m s−1) TCs as STS (41.5–50.9m s−1) or TY.
This tendency could stem from the varying sample
sizes of TCs across different intensities, highlight-
ing a limitation of DL methods. This issue poses a
challenge to address in the future.

When a TC makes landfall, the transition
from ocean to land alters the TC’s energy source,
encountering friction and changes in terrain, thereby
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Figure 3. TCIF-fusion model 24 h forecast performance (a) MK-guided TCIF-fusion model performance with different inputs, (b)
the loss curves for models with or without MK, (c) the TCIF-fusion model without MK, and (d) the TCIF-fusion model with MK.

Table 2. The comparison of the MAEs of the MK-guided TCIF-fusion model and other methods in forecasting TC intensity.

Method Test data Region MAE (2020/2021)

DL SAF-Net (Xu et al 2022) 2015–2018 Northwest Pacific 4.30
PTCIF (Meng et al 2023b) 2015–2018 Northwest Pacific 4.60
TC-Pred (Zhang et al 2022) 2019–2020 Northwest Pacific 3.98
Pre_3D (Ma et al 2023) 2014–2019 Northwest Pacific 3.72
MLP (Xu et al 2021) 2019–2020 Atlantic 4.22
TCP-NGBoost (Meng et al 2023a) 2019–2020 Atlantic 4.49

Subjective CMA 2020–2021 Northwest Pacific 4.50/4.30
Forecasts JMA 2020–2021 Northwest Pacific 4.50/4.30

JTWC 2020–2021 Northwest Pacific 4.90/4.60

Dynamical ECMWF-IFS 2020–2021 Northwest Pacific 6.70/8.00
Model NCEP-GFS 2020–2021 Northwest Pacific 4.70/5.90

Our MK-guided TCIF-fusion 2020–2021 Northwest Pacific 3.56 (3.64/3.51)

posing difficult challenges for accurate forecasting.
In 2020 and 2021, there were 33 instances of land-
falling TCs, with 19 in 2020 and 14 in 2021. For
the MK-guided TCIF-fusion model, CMA, JMA,
and JTWC, the TCIF errors for landfalling TCs in
2020 were 4.55m s−1, 4.95m s−1, 5.31m s−1, and
4.87m s−1. In the case of landfalling TCs in 2021, the
intensity forecast errors were 4.46m s−1, 6.42m s−1,

5.89m s−1, and 5.43m s−1. The results show that
the MK-guided TCIF-fusion model has greater
stability and accuracy in forecasting the intens-
ity of landfalling TCs, but further improvement is
needed.

These results show that the MK-guided TCIF-
fusion model can provide accurate 24 h TCIFs, deliv-
ering crucial decision support for forecasters.
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Figure 4. Forecast results of the MK-guided TCIF-fusion model distribution of TCs in different intensities, (a) forecast error in
different intensities, (b) forecast frequency in different intensities.

4. Conclusions

TCs represent some of the most formidable nat-
ural disasters, underscoring the pivotal significance
of precise TCIFs. Despite achieving notable fore-
casting accuracy levels, DL-based methods continue
to grapple with certain challenges. This paper veri-
fies the advantageous role of SST and IR imagery
in enhancing TCIF. By merging SST and IR data
with atmospheric factors, the performance of the DL
model experiences an 8.0% enhancement. Given the
highly intricate interactions governing the nonlin-
ear dynamics of TCs involving multiple factors, this
research introduces a model design that explicitly
accounts for inter-factor dependencies. This design
augments the model’s capacity to capture the detailed
evolution of TC intensity, effectively reducing intens-
ity forecast errors. Furthermore, integrating model-
guided knowledge during the modeling process mit-
igates the interference from environmental ‘noise’,
subsequently amplifying both learning speed and
model performance.

The MK-guided TCIF-fusion model delivers a
24 h forecast error of 3.56m s−1 for Northwest Pacific
TCs spanning 2020–2021. Thismethod is comparable
to, or surpasses, traditional and DL-based TC intens-
ity prediction methods.

Given the complexity of multi-factor interac-
tions inherent in the TC phenomenon, the tailored
MK-guided TCIF-fusion model augments the com-
prehension of inter-factor relationships and effect-
ively mitigates environmental noise interference in
forecasting. This model framework holds relev-
ance for TCIFs and TC track forecasts, rainfall
forecasting, etc.

Regrettably, similar to existing DL-based meth-
ods, this study relies on reanalysis data that lacks
accessibility for operational forecasting. Pioneering
the development of purely satellite image-based
TC forecasting models is an impending challenge.
Furthermore, considering TC processes’ intricate and

dynamic essence, integrating physical constraints or
prior knowledge into DL models is a promising way
for future research within this domain.

Data availability statement

The IR images are downloaded from www.ncei.noaa.
gov/products/gridded-geostationary-brightness-
temperature. The CMA best track data can be down-
loaded from https://tcdata.typhoon.org.cn/zjljsjj.
html. The ERA5 reanalysis data are downloaded
from https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=form and
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-pressure-levels?tab=form.

The code is available in GitHub: https://github.
com/wangchong96/TCIF-fusion.
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