

Continental fragment collision in subduction and the dramatic uplift acceleration in the Eastern Anatolian region

Stuart Clark, Peigen Luo UNSW Sydney Stuart.clark@unsw.edu.au

In this region, there are multiple trench segments and subducting slabs

⁽Portner et al., 2018), Geosphere

The Central Taurides has experienced significant uplift since 7 Ma

Slide 3 Schidgen et al., 2014. (Earth-Sci. Rev.)

Slow progressive uplift since 7 Ma can be explained by different mechanisms

(Göğüş et al., 2017) Nat. Comm.

River profiles in the region suggest multiphase uplift since 7 Ma

(Schildgen et al., 2012) EPSL

Recent finding suggest that a major pulse of uplift occurred at 450 ka

Tomographic images suggest a slab gap in the mantle

We tested the slab-gap model with Underworld2.0 using an oceanic plate and a continental fragment representing Eratosthenes

We ran a variety of 2D and 3D models of varying lengths and thicknesses to estimate uplift in the Central Taurides

Model Name	Continental fragment length	Continental fragment thickness	Continental fragment width	Slab breakoff
Model 200	200 km	25 km	0 km	Yes
Model 320	320 km	25 km	0 km	Yes
Model 400	400 km	25 km	0 km	Yes
Model Nobreakoff	320 km	15 km	0 km	No
Model 3D	320 km	25 km	280 km	Yes

The equation of motion is solved with incompressibility with the viscosity reduced for regions undergoing high stress

		Symbol	Meaning
	Equation of motion	p	Dynamic pressure
$ abla p - abla \cdot oldsymbol{ au} = \Delta ho g \widehat{\mathbf{z}}$		τ	Deviatoric stress tensor
		ρ	Density
		g	Gravity
$ abla \cdot oldsymbol{u} = 0$	Incompressibility	η	Dynamic viscosity
		u	Velocity vector
$(\partial u, \partial u)$		â	Vertical vector
$\boldsymbol{\tau}_{ij} = \eta \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$	Deviatoric stress		

(Stegman et al., 2006)

Model 320

Time = 6.5 Ma

Shortening ceases around 450 ka as is associated with rapid uplift in the CT region 8 Ma - Present

 $V_{OPD_CT} = u_{T+200 \ km} - u_{T+350 \ km}$ (-ve => shortening)

(Schellart and Moresi, 2013), JGR

Luo et al., *in prep*.

Actual uplift (since 450 ka) is 3.3 mm/yr, which is best explained by Model 400 and Model 3D

Model Name	Continental fragment length	Continental fragment thickness	Continental fragment width	Slab breakoff	Maximum Uplift Rate (mm/yr)
Model 200	200 km	25 km	0 km	Yes	2.6
Model 320	320 km	25 km	0 km	Yes	2.8
Model 400	400 km	25 km	0 km	Yes	3.4
Model Nobreakoff	320 km	15 km	0 km	No	0.2
Model 3D	320 km	25 km	280 km	Yes	3.3

The 2D model underpredicts the uplift rate by 0.5 mm/yr compared to 3D

Luo et al., *in prep*.

Recent uplift can be explained by the rebound associated with the slab tearing and breakoff

