Preliminary results – subject to change

EGU 2024 ADDITIONAL POSTER INFORMATION

Gabrielle Burns – PhD student at The University of Melbourne gabrielle.burns@unimelb.edu.au Session HS10.9 | Poster: EGU24-7198 EGU General Assembly 2024 Vienna, Austria, 14-19 April 2024 Co-Authors: Keirnan Fowler, Clare Stephens, Murray Peel

SIMHYD ALL EQUATIONS

Modelled AET vs observed flux tower, precip and PET (21/23 AET equations shown, base model = Simhyd)

GR4J ALL EQUATIONS

Modelled AET vs observed flux tower, precip and PET

(22/23 AET equations shown, base model = GR4J)

Preliminary results – subject to change

VIC ALL EQUATIONS

Modelled AET vs observed flux tower, precip and PET (18/23 AET equations shown, base model = VIC)

GR4J 4 EQNS

Modelled AET vs observed flux tower, precip and PET

(4/23 AET equations shown, base model = GR4J)

VIC 4 EQNS

Modelled AET vs observed flux tower, precip and PET

(4/23 AET equations shown, base model = VIC)

ALL CALIBRATIONS BAR CHART

Multi-calibration objective function values (OFV) (Example 17 AET equations, 3 models)

Preliminary results – subject to change		Ranked	l results	(OFV)
aet eqn		GR4J S	Simhyd	VIC
I	Evaporation at the potential rate	18	16	8
2	Evaporation at a scaled, plant-controlled rate equation used for base model = **	14	14**	17
3	Evaporation based on scaled current water storage and wilting point	6	12	#N/A
4	Constrained, scaled evaporation if storage is above a wilting point	12	1	<mark>1</mark>
5	Evaporation from bare soil scaled by relative storage	10	9	14
6	Transpiration from vegetation at the potential rate if storage is above a wilting point and scaled by relative storage if not	7	5	#N/A
7	Evaporation scaled by relative storage	9	11	2**
8	Transpiration from vegetation, at potential rate if soil moisture is above the wilting point, and linearly decreasing if not. Also scaled by relative storage across all stores	2	21	<mark>18</mark>
9	Evaporation from bare soil scaled by relative storage and by relative water availability across all stores all stores	11	13	14
10	Evaporation from bare soil scaled by relative storage	8	10	12
П	Evaporation quadratically related to current soil moisture	13**	8	15
12	Evaporation from deficit store, with exponential decline as deficit goes below a threshold	19	18	9
13	Exponentially scaled evaporation	3	6	4
14	Exponentially scaled evaporation that only activates if another store goes below a certain threshold	22	19	10
15	Scaled evaporation if another store is below a threshold	20	17	11
16	Scaled evaporation if another store is below a threshold	21	20	16
17	Scaled evaporation from a store that allows negative values	17	7	5
18	Exponentially declining evaporation from deficit store	#N/A	#N/A	#N/A
19	Non-linear scaled evaporation	<mark>1</mark>	2	3
20	Evaporation limited by a maximum evaporation rate and scaled below a wilting point	15	#N/A	6
21	Threshold-based evaporation with constant minimum rate	4	3	7
22	Threshold-based evaporation rate	16	15	#N/A
23	Transpiration from vegetation at the potential rate if storage is above field capacity and scaled by relative storage if not (similar to evap_6), addition of evaporation from bare soil scaled by relative storage (similar to evap_5)	5	4	#N/A

MARRMOT

Modular Assessment of Rainfall-Runoff Models Toolbox

Matlab code for 47 conceptual hydrologic models

V2 paper:Trotter et al., 2022

Trotter, L., Knoben, W. J., Fowler, K. J., Saft, M., & Peel, M. C. (2022). Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2. I: an object-oriented implementation of 47 established hydrological models for improved speed and readability. *Geoscientific Model Development*, *15*(16), 6359-6369. <u>https://doi.org/10.5194/gmd-15-6359-2022</u>

VI paper: Knoben et al., 2019

Knoben, W. J., Freer, J. E., Fowler, K. J., Peel, M. C., & Woods, R. A. (2019). Modular Assessment of Rainfall– Runoff Models Toolbox (MARRMoT) v1. 2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations. *Geoscientific*

Model Development, 12(6), 2463-2480. <u>https://doi.org/10.5194/gmd-12-2463-2019</u>

CONTACT

- Gabrielle Burns PhD Student
 - gabrielle.burns@unimelb.edu.au
- Supervisors:
 - Dr Keirnan Fowler
 - Dr Murray Peel
 - Dr Clare Stephens