European Geosciences Union general assembly April 14-19, 2024 - Vienna, Austria

Introduction

environment, establishing an in-situ reductive barrier.

the Cr⁶⁺ is effectively reduced to its less toxic and less mobile form, Cr³⁺.

environment.

by merely introducing a reducing agent.

Question. So, how much is chromium reduced? What happens when it is reduced?

Immobilization Mechanisms of Hexavalent Chromium When Reduced by Fe²⁺-Bearing Clay Minerals Depending on Solution pH

¹Department of Civil & Environmental Engineering, Seoul National University, Seoul, South Korea ²Korea Institute of Geoscience and Mineral Resources, South Korea

Author e-mail: chan1570@snu.ac.kr

<u>Changyu Moon¹, Hee-sun Moon², Kyoungphile Nam^{1*}</u>

(2) Reduction Cr⁶⁺ by structural Fe²⁺ in clay minerals

Reduction exp.

- The C^{r6+} solution was injected into a batch containing treated/untreated clay minerals.
- Tested at pH 2.5 11

- Removal of Cr⁶⁺ was negligible in the solution with Fe^{3+} -bearing untreated clay mineral.
- In the solution with treated clay mineral, Cr⁶ was removed by being reduced by structural Fe²⁺.
- As pH decreased, higher rates and extent of Cr⁶⁺ reduction were observed.

Reasons of higher rates and extent at acidic pH

Reduction rate

The observed reaction constant increased at lower pH conditions, attributed to the involvement of hydrogen ions in the reduction reaction $3Fe^{2+}+Cr^{6+}+8H^{+} \rightarrow 3Fe^{3+}+Cr^{3+}+4H_{2}O$

Reduction extent

Aqueous Cr(VI) Aqueous Cr(III) Adsorbed and/or Precipitated Cr

Consumed Fe(II)

As the pH increased, the difference in redox potential diminished, indicating that the reaction was thermodynamically less favorable

• At pH 2.5 and 4.5

- Structural Fe²⁺ was fully consumed 30~66 % aof Cr³⁺ were found to be associated with clay mieneral. • <u>At pH 7</u>
- Structural Fe²⁺ was fully consumed
- Cr³⁺ was not present in solution, but rather all was found to be associated in clay minerals.
- At pH 9 and 11
- Not all of structural Fe²⁺ was consumed - Cr³⁺ was not present in solution

Immobilization mechanism of C^{r3+} by Fe²⁺-bearing clay minerals

(1) Visual Minteq model (ver.3.1) prediction

(2) Surface adsorbed Cr³⁺ determined by DTPA extraction

(3) XPS Analysis

(4) SEM-EDS analysis

Montmorllonite (pH 7)

Conclusions

- (1) As pH decreased, the reduction extent and rate is increased

Acknowldegement

 According to the Visual Minteq model (version 3.1) prediction, Cr^{3+} can be present in the aqueous solution at pH 2.5 and 4.5, while it can be precipitated at pH 7 and above.

Н	Cr ³⁺ associated with clay minerals (%) (A)	DTPA extractable Cr ³⁺ (%) (B)	Adsorbed Cr ³⁺ (%) (B/A)	
.5	0.437	0.447	102	Adsorption
.5	0.663	0.663	100 🥤	occurs
7	0.973	0.025	ך 3	occurs
Э	0.801	0.026	3 –	Precipitation
1	0.701	0.004	1 J	occurs
.5	0.296	0.281	95]	 ✓ Diethylenetriamine pentaacetate (DTPA) is chelating agent that can remove adsorbed Cr³⁺
.5	0.512	0.487	95 🗸	
7	0.986	0.052	ך 5	
9	0.845	0.006	1 -	
1	0.721	0.003	0	

The DTPA extraction experiment results confirmed that at pH 2.5 and 4.5, all Cr³⁺ was desorbed by DTPA, while desorption hardly occurred at pH 7 and above, which can be attributed to precipitation occurring

- The peak for Cr2p_{3/2} observed between the binding energies of 577-579 eV indicates Cr^{3+} (Wu et al., 2012).
- Significant differences in peak binding energy were observed between pH 2.5 and 7. Specifically, presence of a peak at 577.6 eV at pH 7 suggests the presence of Cr(OH)₃ (Biesinger et al., 2004)

Nontronite (pH 7)

• The SEM-EDS analysis confirmed the existence of chromium on the clay mineral surface at all pH conditions. • The chromium precipitates were clearly observed at pH above 7.

Fe²⁺-bearing clay mineral can reduce and immobilize hexavalent chromium (Cr⁶⁺) efficiently.

2 The reduced chromium (Cr³⁺) was immobilized by sorption onto clay mineral surface at pH 2.5 and 4.5, and was precipitated in the form of $Cr(OH)_3$ at pH 7 and above.

 \rightarrow We suggest the pH 7 is the optimal condition for the remediation of hexavalent chromium utilizing clay minerals

This work was financially supported by Mid-Career Researcher Program through National Research Foundation (NRF) grant funded by the Ministry of Science and ICT (MSIT) (No. 2022R1A2C109273213)