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Consecutive cells 
with equal weights

Consecutive cells 
with descending weights

Individual cells

observation prediction

Peak	rain	rate:	664.03	mm/h
Peak	reflectivity:	68.17	dBZ

Semi-major	axis	radius:	1.29	km
Semi-minor	axis	radius:	0.88	km

Generation of  Rain Cell Profile

Properties
1. Mean reflectivity

2. Semi-major axis radius

3. Semi-minor axis radius

Evolution Properties

observed rain cells

predicted rain cell

analog rain cell

• Mean	reflectivity
• Semi-major	axis	radius
• Semi-minor	axis	radius

Identification Cell Analogs

Bi-variate exponential decay of rainfall distribution

EXCELL Modelling

individual

Kendall tau = 0.161
Spearman = 0.239

Kendall tau = 0.118
Spearman = 0.175

Kendall tau = 0.037
Spearman = 0.043

Inter-correlation copula

Prediction Errors
1. Mean reflectivity errors

2. Semi-major axis radius errors

3. Semi-minor axis radius errors
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(2) Methodology
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Based on EXCELL model [1], the rain rate distribution within a cell is
modelled as an exponential decay function with an elliptic horizontal
shape characterised by peak rain rate 𝑅!, semi-major axis 𝑎!, and
semi-minor axis 𝑏! :

The peak rain rate 𝑅! can be derived by fit-forcing a nonlinear
equation using parameters determined from the radar observations:

Fig 2. The spatial-distributed of cells via fitting EXCELL model using predicted 
properties from the evolution model.

Fig 1. The overview of proposed methodology and approach to our research challenges

References

• Many existing object-based nowcasting techniques focus primarily on positional forecasting and
overlook the evolution of rainfall intensities.

• a recent study by Cheng et al. (2024) highlights the potential of 3D radar data and deep-learning
techniques in accurately predicting the evolution of convective cell properties.

• This work aims at elaborating Cheng’s evolution prediction model and further integrate it into a
Kalman filter-based positional forecasting model, such that the rainfall intensity evolution can be
accounted for through the nowcasting process.

An object-based nowcasting model
accounting for cell property evolution

advection

evolution

Object-based nowcasting

integrated

Quantification of evolution uncertainty1

Generation of spatially-distributed convective rain cells2

Main challenges and our solutions

(3) Quantification of Evolution Uncertainty (4) Spatially-Distributed Rain Cells

𝑡 + ∆𝑡

Peak	rain	rate:	641.39	mm/h
Peak	reflectivity:	67.92	dBZ
Semi-major	axis	radius:	5.29	

km
Semi-minor	axis	radius:	1.01	

km

𝑡 + 2∆𝑡

Peak	rain	rate:	630.62	mm/h
Peak	reflectivity:	67.81	dBZ
Semi-major	axis	radius:	4.99	

km
Semi-minor	axis	radius:	0.97	

km

𝑡 + 3∆𝑡

Peak	rain	rate:	580.04	mm/h
Peak	reflectivity:	67.23	dBZ
Semi-major	axis	radius:	4.61	

km
Semi-minor	axis	radius:	0.99	

km

(5) Future Work

Fig 2. Comparative statistical fittings for the prediction errors of rain cell attributes at a 5-
minute forecast lead time. The student-t distribution closely models the errors in mean 
reflectivity and semi-minor axis radius, as evidenced by the KS test. In contrast, the semi-
major axis radius error aligns well with a log-logistic distribution.

To efficiently sample predicted rain cell properties, we analysed the
evolution error characteristics and the non-negligible interdependencies
between properties. A multivariate Gaussian copula model was utilised to
flexibly capture the intricate dependence structure among these
properties.

Fig 3. Multivariate analysis of 
forecast error distributions: (a) 
Pairwise scatter plots with 
corresponding Kendall's τ and 
Spearman's ρ values. (b) Joint 
distribution analysis combining 
scatter and marginal histogram 
plots.

(a) (b)

Statistical characteristics and inter-correlation of cell properties

Fig 4. The comparison of original predicted errors from Cheng et al. (2024)’s evolution
model and the synthetic error data generated from the Gaussian-copula model.

We can estimate the quality of synthetic data by visual analysis of Fig.
4(a). The Gaussian-copula model reproduce the dependence structure
between pairs of cell evolution predicted errors. Besides, the marginal
probability distribution of Gaussian-copula data preserves the
characteristics of original predicted error data.

Fig 5. The distribution of rainfall rate 
considering the evolution uncertainty.

Fig 5. illustrates the probabilistic distribution of rainfall rates across a 
convective cell's major axis, integrating evolution uncertainty into the 
forecasting model. The grey dashed lines represent the range of 
possible outcomes, encapsulating the variability due to forecast 
uncertainty, while the solid red line indicates the central tendency of 
predicted rainfall intensity. 

Drawing from the established progress in adapting the evolution model,
we have successfully constructed spatially-distributed rain cell profiles
and quantified the associated prediction uncertainties. Our future
endeavors will focus on refining the integration of the convective cell
evolution model with the Kalman filter-based positional forecasting
model [3], aiming to enhance the predictive accuracy and reliability of
nowcasting high-intensity convective rainfall events.
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Multi-variate copula model generation for synthetic sampling


