A physically-based formulation for texture evolution during dynamic recrystallization. A case study for ice. Supplementary

Thomas Chauve, <u>Maurine Montagnat</u>, Véronique Dansereau, Pierre Saramito, Andréa Tommasi, Kevin Fourteau

Institut of Geosciences of Environment IGE, Univ. Grenoble Alpes, CNRS, France Institut of Earth Sciences ISTerre, Univ. Grenoble Alpes, CNRS, France Lab. Jean Kuntzman LJK, Univ. Grenoble Alpes, CNRS, France Geosciences Montpellier, Univ. Montpellier, CNRS, France Center for Snow Study CEN, CNRM, Univ. Toulouse, France

ed by the European Com

VOLUTION

Textures and large-scale ice flow

cnrs

Modeling texture evolution with DRX

Dynamic recrystallization in the lab

Orientation of new / parent grains

*

*

*

Maurine Montagnat EGU 2024

Chauve et al. 2017

Modelling of DRX texture - issues

Textures resulting from simple shear are not well simulated so far

Natural shear zone Barnes Ice Cap (Hudelston 1977)

☆ ※ Maurine Montagnat EGU 2024

Mean-field modeling VPSC (Montagnat 2001)

Full-field modeling (Llorens et al. 2017)

/

CNrs

Modeling texture evolution with DRX

DRX -> rotation of c-axis toward an attractor c0

c0 is the orientation that maximizes the plastic strain for a given stress state **S**

-> c0 maximizes the Resolved Shear Stress on the basal plane (0001)

$$RSS(\mathbf{a},\mathbf{c},\mathbf{S}) = \mathbf{S}:\mu$$

$$\mu = \frac{1}{2} \left(\mathbf{c} \otimes \mathbf{a} + \mathbf{a} \otimes \mathbf{c} \right)$$

Solutions of
$$\mathbf{Wc} - \lambda [\mathbf{Dc} - (\mathbf{c}^T \mathbf{Dc}) \mathbf{c}] = \mathbf{0}$$

Solutions of $\frac{1}{\Gamma_{RX}} (\mathbf{C_0} - \mathbf{c}) = \mathbf{0}$
Solutions of $\mathbf{Wc} - \lambda [\mathbf{Dc} - (\mathbf{c}^T \mathbf{Dc}) \mathbf{c}] + \frac{1}{\Gamma_{RX}} (\mathbf{c_0} - \mathbf{c}) = \mathbf{0}$
Evolution of the solutions as Γ_{RX} increase
Maurine Montagnat EGU 2024

Modeling texture evolution with DRX

Results : simple shear

*

*

Experimental results from Journaux et al. 2019

Maurine Montagnat EGU 2024

Ice - strong viscoplastic anisotropy

~ isotropic

vertical compression

dynamic + recrystallization

horizontal shearing

high T recrystallization

and dynamic

Texture-induced anisotropy

Ex.: Evolution along NEEM ice core (Greenland)

Montagnat et al. 2014

Maurine Montagnat EGU 2024

Dynamic recrystallization (DRX) in the lab (

7%

13 %

17.8 %

12%

12 %

Montagnat et al. 2015

Maurine Montagnat EGU 2024

(IGF	
		/

			'	Т							'
	·										
	۰,	2		. '							
	•	•	•	•							•
	•										
	••		••	• •	•			•			
	·		•								•
	·										
	۰.	1		. •							
	·										
	·										
	·		•								•
	e,	`	••	٠.	•	•	•	•	•	•	10
	·										
	•										•
	٠		•								•
•	••	~	•••	••	•	•	·		1	•	• • •
	•	•	•	•							•
	•										
	•										
	ð	-		٦							•
		`	••	••	٦		•	•	•	•	10
	٠	•	•	•		ヽ					•
	•						•				
	•		•				1				
		-		•				١.			•
	,	~	-					I			•
l	r	2					•		Ľ.		10
	2	P	-								
Í	7		•								
	•	•									
	Ċ		1	1							
	÷	- 0	- 0	- 0							
	÷			÷							
	2	÷	٠.	٠.	·	•	·	·	÷		÷
				- 2							
	·										
	•										
	÷	•		•							
	•										
	·	•	•								•
	٠	•	•	•							•
	·										•
	•										•
	•	•	•	•							•
	•	•	•								•
	•	•	•								•
	•		•								•
	•		•								•
	•		•								•
	1	- 0	1	1							1
	•		•								•
	•		•								
	2	- 0		-							
				-							
		÷									
		1		1							
		~		۰.							
	••	-									
				;							
	Ľ	3	1	•	•	•	•	•		•	10
		~		~		0	_	,			
		1)	9	4	2			
		-4	_ 1				٠.				

CN

Dynamic recrystallization in the lab

Orientation of new / parent grains

*

*

*

Maurine Montagnat EGU 2024

Chauve et al. 2017