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Data-driven (DD) parameterizations

Current data-driven parameterizations:

- Great offline score (eg., Rasp et al., 2018, 
Yuval et al., 2020)

- Only a few online test, frequent coupling 
instabilities (eg., Brenowitz, Henn et al., 2020, 
Rasp, 2020) 

Why are there so few online tests available?

- Climate models (often) in fortran, DD 
parameterizations in python.

- a few solutions available (eg., Infero, FKB), 
but often tied to pytorch or TF/Keras.

Divergence of precipitable water during 
an online test of a DD parameterization. 
(Brenowitz, Henn et al., 2020)



Objectives

NN parameterization of deep+shallow convection : Bhouri et al., 2023 (preprint).

- ensemble of 128 feedforward neural networks (stochastic)
- trained on data from a CAM & SPCAM-5 simulation, in a multi-fidelity setting
- jax-based

Additional challenge: which adaptations are needed to use the neural network 
trained on CAM & SPCAM-5 data in ARPEGE-Climat?

Implementation and online evaluation of a neural network (NN) based 
parameterization in ARPEGE-Climat (Roehrig et al., 2016)



Fortran/python coupling – 1/3

Coupling package : PhyDLL-0.2 
(Serhani et al., under review ; 
developed by CERFACS).

- designed for physical solvers 
coupled to DL frameworks, both 
running on a GPU partition

- MPI to communicate
- C kernel: communication 

speedup
- User friendly python API, a bit 

more complicated in fortran.



Fortran/python coupling – 2/3

Different use of PhyDLL: ARPEGE-Climat and the NN run on separate partitions. 

(52 fields)

(48 fields)



Fortran/python coupling – 3/3

How many gridpoints? 

- ARPEGE-Climat runs at a resolution of : ~50km or 136k gridpoints 
- 178 gridpoints/CPU (ARPEGE)
- ~17k gridpoints/GPU (NN)

How fast/slow is it?

- 0.85s/timestep: expensive
- inference time on GPUs ~3 ms (vs. ~0.5s on CPUs)
- fortran -> python MPI communication: ~12ms
- python -> fortran MPI communication: ~0.7s



ARPEGE-Climat vs. SPCAM-5 

Adaptations in ARPEGE-Climat:

- New ARPEGE-Climat configuration with 26 vertical 
levels, matching CAM & SPCAM-5’s
(This version of ARPEGE-Climat has 50 vertical levels 
by default)

- Transformation of variables (eg., TOA incoming solar 
radiation * cos(μ), dT/dt to dh/dt conversion)

- NN only outputs dT/dt and dq/dt: precipitations need 
to be diagnosed in ARPEGE-Climat from NN dq/dt



Online run
The NN replaces deep + shallow convection:

- Stability: 1 year without explosion. 
- Great offline performance of the NN when 

using ARPEGE-Climat data as input.
- Convection is too weak when the NN 

replaces (online) deep + shallow 
convection: requires further calibration.



Conclusion

- We present a version of ARPEGE-Climat that interacts with a NN-based 
parameterization for convection. 

- The fortran/python interfacing is achieved using PhyDLL.

- We have performed a first test of a NN parameterization in ARPEGE. The NN 
parameterization was trained using data from SPCAM-5.

- The implementation of the NN parameterization required careful preparation in 
ARPEGE. We have performed a 1-year-long, stable simulation. 

- Performance can be improved by calibration of ARPEGE and/or the NN ensemble. 

Thank you for your attention!


