Observed variability of AMOC transport components at 11°S

<u>Anna C. Hans¹, R. Hummels¹, P. Brandt^{1,2}, and R. Imbol Koungue¹</u>

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany ²Faculty of Mathematics and Natural Sciences, Kiel University, Germany

1. Introduction

Figure 1. Sketch of the Atlantic current system with the warm surface flows (red) and cold deep flows (blue).

The zonally and vertically integrated upper-ocean meridional flow in the tropical Atlantic is associated with the upper branch of the Atlantic Meridional Overturning Circulation (AMOC),

- a key feature of the oceanic circulation which has a big impact on regional weather and global climate.
- whose characteristics and variability are crucial for deep water formation at high latitudes in the North Atlantic.

TRACOS observing system at 11°S

- Western Boundary moorings
- Eastern Boundary mooring
- Bottom pressure recorders (BPR)
- Ship-based measurements
- Argo, Satellite SLA and wind

Figure 2. Overview of the TRACOS observing system with moorings and BPRs. The mean meridional velocity field is shown in colour.

2. Western Boundary (WB)

North Brazil Undercurrent Transport

- Crossroad for meridional property transfer between hemispheres
- Stable flow of 25.0 ± 0.8 Sv

Figure 3. NBUC meridional transport time series. Ship section transports are indicated

3. Eastern Boundary (EB)

Angola Current Transport

- Gateway for equatorial variability in the Benguela upwelling system
- Weak mean and variable flow [2] of -0.15 ± 0.02 Sv

by red dots. Update from [1].

section transports are indicated by yellow dots. Update from [2].

4. Basin-wide Transport (upper 1200 m)

References

5. Future work

[1] Hummels et al. (2015). Interannual to decadal changes in the western boundary circulation in t he Atlantic at 11°S, Geophysical Research Letters, 42(18), 7615-7622, doi: 10.1002/2015GL065254.

[2] Kopte et al. (2017). The Angola Current: Flow and hydrographic characteristics as observed at 11°S, J. Geophys. Res. Oceans, 122, 1177–1189, doi: 10.1002/2016JC012374. [3] Herrford et al. (2021). Seasonal variability of the Atlantic Meridional Overturning Circulation at 11°S inferred from bottom pressure measurements, Ocean Sci., 17(1), 265-284, doi: 10.5194/os-17-265-2021.

[4] Tuchen et al. (2022). Transports and Pathways of the Tropical AMOC Return Flow From Argo Data and Shipboard Velocity Measurements, J. Geophys. Res. Oceans, 127(2), e2021JC018115, doi: 10.1029/2021JC018115.

Comparison of AMOC transport estimates at 11°S and \blacktriangleright

associated uncertainties based on different methodological approaches and data sets

- Method testing by subsampling a numerical model \succ
- Combination of all available data sets to obtain a 'best AMOC' transport time series
- Analysis of AMOC variability at 11°S on different time scales and comparison to other latitudes

HELMHOLTZ