2.Goal

Weather forecasting in urban environments is a complex task because of the highly heterogeneous nature of the urban structure. Nevertheless, many issues are inherent to urban meteorology, such as thermal comfort or energy consumption.

State-of-the-art meteorological models at hectometric resolution, like the Meso-NH research model [7], can provide accurate urban meteorology forecasts thanks to the urban schemes like TEB [2]. However, such simulations require great computing power due to its complexity. Statistical downscaling techniques are machine learning methods enabling the estimation of fine resolution fields from one or several low resolution fields. While enabling fine estimation of urban weather, these methods can significantly reduce computational costs compared to hectometric simulations.
2.Goal

-3.Input for downscaling

 GLOBAL MODEL : ARPEGE [3] (5km)2 m operationally at Météo France.

Given large scale simulations at coarse resolution, build an Artificial Intelligence downscaling emulator providing the $\mathbf{2}$ meters temperature at hectometric resolution.

HECTOMETRIC MODEL : Meso-NH [1] (300m)

Dataset: Hourly 2 meters temperature (T2m) fields from ARPEGE and Meso-NH simulations during August 2022 over Paris region.

-5.Downscaling results over test set-

Canonical Correlation Analysis

Deep Learning Convolutional Neural Networks

