Combining stand-level and remote sensing data to model post-fire recovery of Mediterranean tree-forest communities – A case of study in Spain.

Raúl Hoffrén^{1,2}, Juan de la Riva^{1,2}, Darío Domingo^{2,3}, María Teresa Lamelas^{2,4}, Paloma Ibarra^{1,2}, Alberto García-Martín^{2,4}, and Marcos Rodrigues^{1,2}.

¹ Department of Geography and Land Management, University of Zaragoza, Spain. ² Geoforest-IUCA Research Group, University of Zaragoza, Spain. ³ EiFAB-iuFOR, University of Valladolid, Soria, Spain. ⁴ Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain.

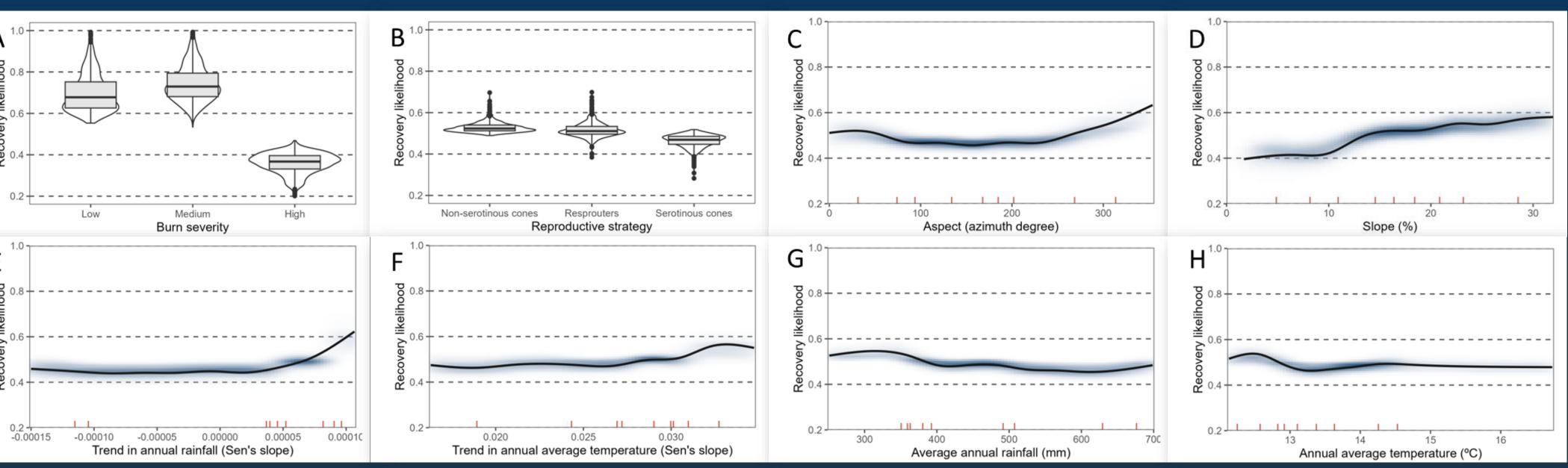
Introduction

- Mediterranean forests are recurrently affected by **wildfires**.
- Fire activity is expected to **accelerate in the** future.
- Understanding the factors that govern the recovery of forest communities is essential to mitigate the negative effects of wildfires.

Objectives

- Build a predictive model of post-fire recovery in typical Mediterranean tree-communities.
- Identify the key drivers of the recovery process.
- Focus on stand structure, composition and biodiversity.

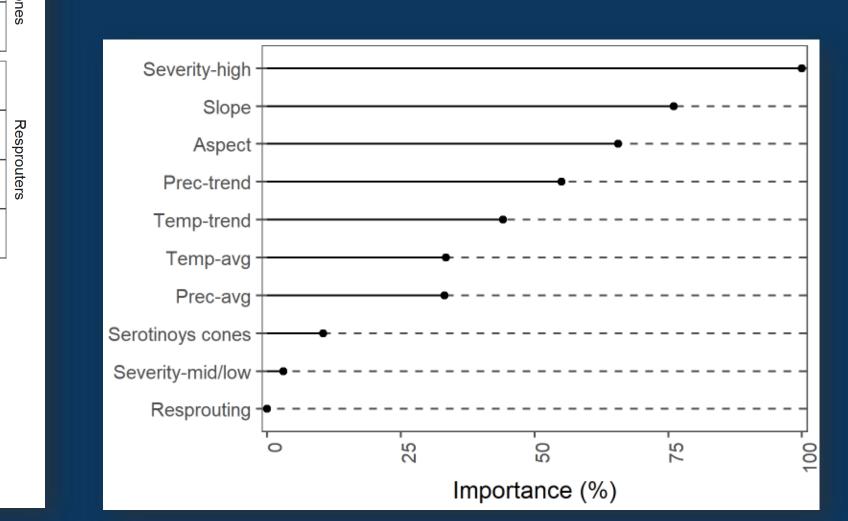
Study area


Location of the six surveyed fire sites burned in the summer of 1994 in Spain (above) and illustrations of the four tree-communities analyzed in the study (below).

1. Post-fire recovery state:

- Burned and unburned control plots were compared using cluster analysis. Unburned plot were placed in the "tree-dominated forest" typology while **burned plots** were classified as either "transitional woodlands" or "shrubland and grassland".
- Burn severity had a significant effect on the post-fire recovery albeit strongly modulated by local topography.
- The majority of burned plots showing recovery traits were located in north-facing steep slopes (>15%).
- On the contrary, the majority of burned plots not recovered (i.e., "shrubland and grassland" typology) tend to appear in southern slopes.

3. Post-fire recovery likelihood and its driving factors:



Response curves showing the likelihood of the post-fire recovery per driving factor. A) Level of severity; B) Dominant reproductive strategy; C) Aspect (azimuth degrees); D) Slope of the terrain (%); **E)** Trend in annual rainfall (Sen's slope); **F)** Trend in annual temperature (Sen's slope); **G)** Average annual rainfall (mm); **H)** Average annual temperature (°C).

Geografía y Ordenación del Territorio

2. Key predictors:

Severity level, slope, and aspect consistently the most were influential post-fire factors on recovery.

Methodological flow

1. Geospatial data acquisition and processing

- **C**)

Results and main conclusions

- burns.

Acknowledgements: Spanish Ministry of Science and Innovation, for the projects FIREPATHS [PID2020-116556RA-I00] and SERGISAT [CGL2014-57013-C2-2-R]; Government of Aragon [Geoforest S51_23R co-financed with FEDER "Construyendo Europa desde Aragón"]; and European Union-NextGenerationEU for the Postdoc contract "Margarita Salas" to D.D. [MS-240621].

a) Stand-level data collection ~25 years after fire (131 burned, 72 unburned).

b) Estimation of **burn severity** through the GeoCBI (a modified version of the Composite Burn Index) using Landsat-5 TM imagery.

Modelling local topography (slope and aspect) using ALS-LiDAR data.

d) Extraction of **climatic variables** (temperature and precipitation trends) from the ERA5-Land reanalysis dataset.

Modelling of post-fire recovery and its driving factors

Post-fire recovery was inferred from the similarity between the burned and unburned plots.

The influence of the drivers was estimated by fitting **Random Forest** of likelihood of recovery.

Serotinuous species (*Pinus halepensis* and *Pinus*) *pinaster*) were the most frequently affected by high severity burns.

Resprouter (*Quercus ilex*) and especially nonserotinous (*Pinus nigra*) communities were more frequently affected by low to medium severity

After a period of ~25 years, only 25% of the burned plots were considered recovered, either because of their moderate burn severity or being in a favourable environmental setting.

Post-fire recovery **driving factors** were:

✓ Low-to-moderate burn severity.

✓ Favourable topographical setting, especially the shading effect of steep NW slopes (>15%). ✓ Warmer and more humid climate.

