
Welcome to Fourier-Land
Deep-Learning based downscaling of near-surface winds and drifting snow 

 using WRF simulations over synthetic topographies
Manuel Saigger*, Thomas Mölg (*: presenting, contact: manuel.saigger@fau.de)

- wind-driven redistribution affects snow accum-
  ulation on small scales in mountain areas [1]

- interactions between drifting snow and the
  atmosphere can influence local flow field [2]

    high spatial resolution + coupling of drifting
    snow and wind needed to represent snowdrift

    too expensive for (multi-)seasonal assessment 
    for glaciers with classic numerical approach 

1. The Problem
- replace numerical simulation (WRF) of drifting
  snow with deep learning (DL) model

- build training data set of high-resolution WRF 
  simulations

- run WRF in idealized setting
    control what DL model is learning later

- WRF input (atmosphere, terrain, snow)
  representative for real-world conditions  

2. The Idea

3. Creating Fourier-Land
Idea: synthetic topographies with similar spectral 
information as real terrain
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total data set:
72 topographies with
256x256 points, 
Δx = 50 m 

Alps : a ~ 15 ... 25
          b ~ -1.5 ... -2.5

P ~ a λb 

Start from 
white noise

real terrain spectra
e.g. applied in
atmospheric science
 [3, 4]

synthetic terrain
e.g. applied in 
engineering [5] or 
computer game design
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4. Training Data
- idealized WRF LES setup (Δx = 50 m) with coupled 
  snow drift scheme [2], online flux averaging [6],
  and synthetic topographies

- initial conditions: height-constant profiles 
  (preliminary reduced complexity in training data:
   ff = 10 m s-1 , N = 0.01 s-1, ρsnow = 100 kg m-3 ,
   variable input wind directions)

- periodic boundary conditions

- run simulation until momentum fluxes stabilize

- use stabilized fields as training data

a) 30 min average vertical momentum flux
    at 16 points equally distributed over the
    domain at second vertical layer.
b) Average flow field at 10 m above the 
    ground (wind arrows and wind speed),
    averaged for model time 4  to 6 h, input
    wind direction is 230°
c) Average snow mass change rate due to 
    drifting snow, averaged for model time
    4 to 6 h

b) c)

a)

5. DL Downscaling
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basic architecture: U-Net [7]
stacking U-Nets:

data split: 56 - 4 - 12
performance on test data:
RMSE(ff) = 0.98 m s-1

bias(ff) = -0.51 m s-1

RMSE(dd) = 38.8°

example test prediction:

Optimzer
Learning rate
Normalization
Loss Function
Batch Size
Epochs

SGD
0.01, with lr. decay
mean - std
MSE
4
500

- more complexity in training data

- mass conservation constraint in U-NET SNOW

- couple to glacier mass balance model

- run with real-world atmospheric input

    Influence of drifting snow on glacier mass
    balance?

6. Future Plans


