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Why the wave telescope and multi- Advantages of multi-scale S/C: Improved k-space spectra Results: Dispersion and wave
SC al es p aceC raft con fl g urations? m k-space spectra obtained for each peak in PSD separately using the wave telescope C h aracteristics
| | | m Spatial aliasing due to S/C positioning limits detection range (k-cell, parallelogram); see Schulz et al. 2023 o |
m Wave tele§cop_e: Analysis method applied tp multl-spacecraft data: m Here: Correct maximum cannot be detected using 3 S/C, but can with 7 S/C, due to increased detection range Frequen.c:les iIn S/C frame and Wav.e vectors obtained from spectra
Allows estimation of k-space spectra quantifying Wa\{e vectors | m However, many false detections (local maxima) in 7 S/C spectrum = spectrum filtering necessary m Conversion to plasma rest frame via wye = 21 fg,c — Kvy
(Motschmann et al. 1996) > Needed for understanding of formation 3 8/C - 2 5/C with filtered , | m Yields rest frame wave velocity (see lower mid-right panel) via
mechanisms and behavior of plasma waves | | | — With Tiiiered spectrum. vpn = wreK/k?, wavelength A, angle 6y between k and B
m Has been used for 4-spacecraft (S/C) configurations (Cluster, MMS) . + R ; +‘ This can be obtained by using 06
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u I\/Iul-tl scale S/C configurations (meaning > 4 S/C) are planned: = 1 1 = subsets of the 7 S/C and . . x 1 (FS)
Hello_Sy\{arm (9 S/C), Plasmg Observgtory (7 S/F:) .S/C | S S 0 determining spectra for each 05! || 2 (FS)
m Possibility for improvement in resolution, detection range and configuration: N+ N1 - one, finally focusing on the X X 3 (FS)
general performance of the wave telescope ; . ; 2 maxima that are common to all 04" v X XV v 4 (MS)
- 2 -1 0 1 2 3 X | X
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Vlasiator as a probing ground SQ\ Q - 0 . 02 ) )
. L . . 5+ ” Q 5 - 5 ~ L= X% % *% X
m Currently, no multi-scale mission in space = Use of simulations to J o 9 E; 0.1 ’; e vx X
test (improved) capabilities of wave telescope < Q N ° _ & Y % X, x
. . . . k-space = 0 S\ £ ol : 'l € ol 2 , R I | F
m Vlasiator: Hybrid-Vlasov plasma simulation (Palmroth et al. 2018) spectra: = Q = ° 0 g = © 0 0 0 v 20 20
. ! . . . . N N N © , , , , , T i e
m Use of one Vlasiator run with interplanetary magnetic field (IMF) =~ 5 & < @ o \ \ £ 180 PP LXK X (1000 km)
cone angle of 45° with a clock angle close to 180° > Foreshock in 5 5| S 5 T - * & ~ 907 v
_ 0 rue maximum 0 o
southern hemisphere Q @ o ) g O v N lization factors:
m Probing of 3 foreshock (FS) and 1 magnetosheath (MS) positions “ | , | , . , L Low = 9ol 2 _ Porma zation Tactors.
. . . . . 5 0 5 5 0 5 roton cyclotron frequency ()
with 2 different multi-spacecraft configurations (7 S/C) :
For simplicity: 2D configurations, extension to 3D is no problem K, (km " ><10'3 k, (km™) X107 k. (km™) X107 '180@ . o, 'Q . > % 5 O Alfven speedva
| | _ _ _ _ _ QQQQ(LQ QQ(LQQQQ
Y = 0.0 Rg t = 700.0s n, [1 ; ]107 Observations:| [ \UMErous aliased maxima, Larger k-cell, maximum (_:orrectly Maximum is detected correctly, )
true maximum outside of k-cell | detected, but aliasing artifacts aliasing artifacts removed |
m FS: Typical 30s-waves due to backstreaming ions; observed
ﬁ @ properties show basic agreement with literature:
m Dispersion slopes (Narita et al. 2003, 2004, 2007)
. - m \Wavelength in the order of Earth’s radius (Eastwood et al. 2005)
Frequency SpECtra ReSU ItS Wave propag atlon m \Wave vectors parallel or antiparallel to IMF (Narita et al. 2004)
. . . . W d scaled . TORE .
m Power spectral density (PSD) determined m Fast solar wind velocity (vo = 700 km/s) |0§:§t;p:,?caﬁffneot to scale = MS:Also agreement with literature: .
via Fourier transform of B-field time series 00 _with solar wind velocity! m Waves seem to be partly transmitted through the bow shock
1 0% 10 s Among others revelation of low frequency m FS:waves 4 (MS) (see Turc et al. 2022), but with changed direction
305_Wa\/es (typ|ca| for Foreshock) move upstream 2 (FS) m \Wave vectors perpendicular {o BO (Narita et al. 2016)
25 | 1 (FS) -—- |
along By 25
m MS: waves
10° move 0 -30 | _
— 14 -
R downstream = Bow shock CO nc I usions
L m Wave speed: 35| _
= 107 FS waves in __4 (FS) m Vlasiator produces realistic foreshock environment to study waves
& the order of By m \Wave telescope offers huge capabillities for wave analysis, which
40 1.0x10° o Alfvén speed; 40| —>V) | can be largely enhanced by use of multi-scale S/C configurations
MS waves 1'0 5 (') 5 1'0 1'5 m Basic agreement of wave type, dispersion, propagation and
) ) wavelength with literature = Further evaluation ongoing
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