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• Soil Salinity is one of the main drivers of land degradation.

• The presence of excessive salts in soils poses detrimental effects on crop
productivity, water resources, and ecosystems.

• Anthropogenic activities, excessive use of fertilizers, soil characteristics and climatic
parameters affect soil salinity.

Objective

• To extend the predictive capabilities required to describe soil salinization across
Europe under different scenarios.

2. Methodology
• AI-powered tools are employed for the quantification of soil salinity levels

throughout Europe, utilizing data of the year 2018.

• The methodology employed is illustrated schematically in Figure 1.

• A classification model is first developed, followed by the d of two regression
models, taking into account the 2dS/m threshold of soil salinity.

• The classification model was evaluated based on precision, recall, and F1., while the
regression model was assessed using RMSE, MAE, and 𝑅2.

• Soil salinity quantification maps cover the European Union and Great Britain at 1Km
spatial resolution.

Figure 1: Schematic description of the methodology carried out for this study.
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• The model considers soil salinity, represented by electrical conductivity (ECe), as
the target variable.

• The EC1:5 was obtained from LUCAS survey 2018, and converted to ECe to ensure
consistency with other soil salinity maps (Figure 2).

• The model utilized 42 environmental covariates as predictors (Figure 3).

• Seven algorithms were applied to train the binary classification model.

5. Future Works

Figure 2. a: Distribution curve and the histogram of measured soil salinity across the study 
area from LUCAS 2018 survey, b: Spatial distribution of measured soil salinity for the year 

2018 obtained from LUCAS survey year 2018 .

Figure 3. Graphical presentation of the model predictors. The dynamic predictors possess 
yearly temporal resolution. LST= land surface temperature, CReSI= canopy response salinity 

index, GiZ = Getis-Ord Gi values for ECe. 

• The predictors matrix was prepared at 1Km spatial resolution and soil salinity was
quantified considering the two-phase model for the year 2018.

Figure 5. a: Spatial distribution of the predicted soil salinity for the year 2018 after 
development of dual step classification-regression model, b: One-one plot of the map 

predicted for the year 2018 using the validation data.

• To find the proper threshold of soil salinity for development of dual step
classification-regression model.

• To develop the classification-regression model for more than 2 classes.

• Quantifying soil salinity under climatic and anthropogenic boundary conditions.
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Figure 4. a: The per-cell classification map of the study area shows that cells with a value of 0 indicate 
soil salinity lower than 2 dS/m, while cells with a value of 1 has soil salinity greater than 2 dS/m b: Result

of the binary classification models.  
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