

Discrepancies in temporal *p*CO₂ variability from

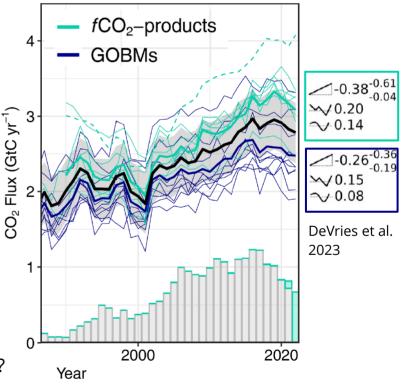
Earth System Models and *p*CO₂-products

Christopher Danek & Judith Hauck

→ oceans took up ~26% of total anthropogenic carbon emissions

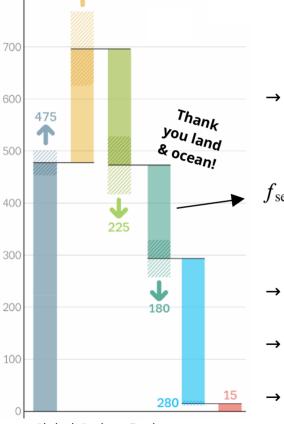
$$f_{\text{sea-air}} = (\text{pCO}_{2,\text{sw}} - \text{pCO}_{2,\text{air}})$$
$$\times K_w \times (1 - f_{\text{ice}}) \times K_0$$

Discrepancies in temporal pCO₂ variability from


Earth System Models and *p*CO₂-products

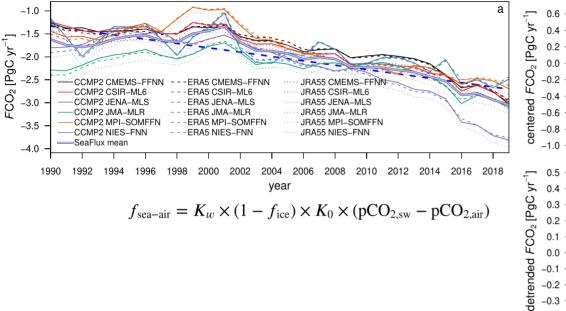
Christopher Danek & Judith Hauck

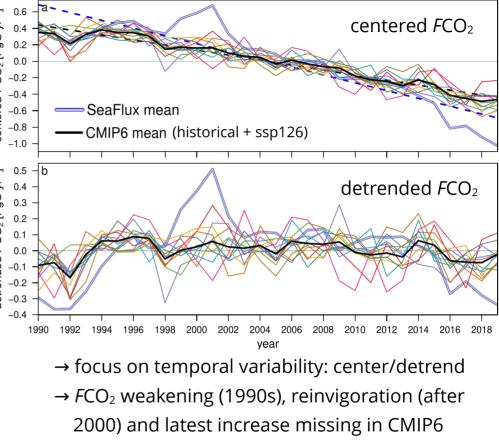
→ oceans took up ~26% of total anthropogenic carbon emissions since 1850


$$f_{\text{sea-air}} = (\text{pCO}_{2,\text{sw}} - \text{pCO}_{2,\text{air}})$$
$$\times K_w \times (1 - f_{\text{ice}}) \times K_0$$

- → systematic model biases in FCO₂ mean/trend/variability
- → carbon-climate feedbacks in our changing world?
- $\rightarrow pCO_2$ in Earth System Models (ESMs)?

Cumulative changes 1850-2022 GtC

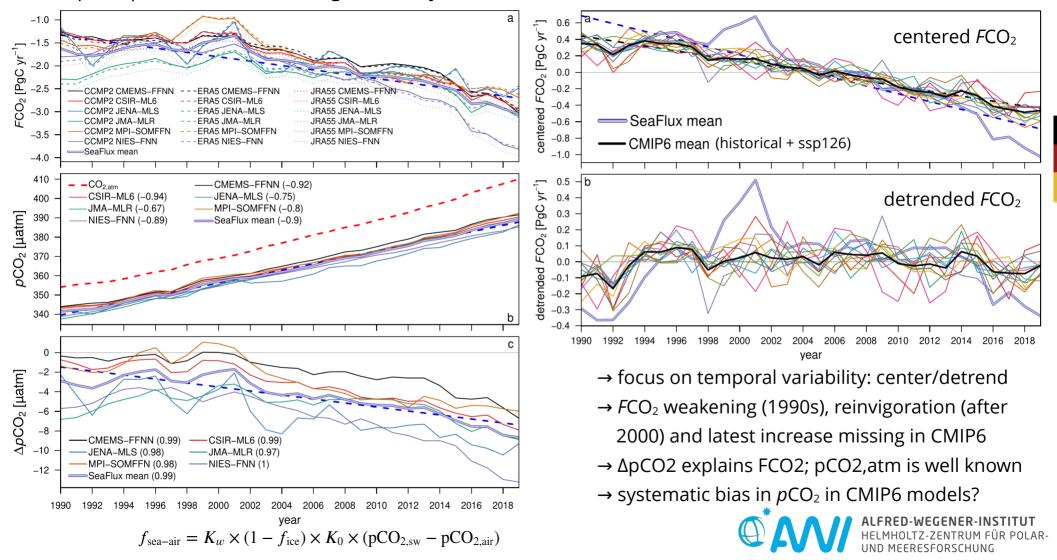

800

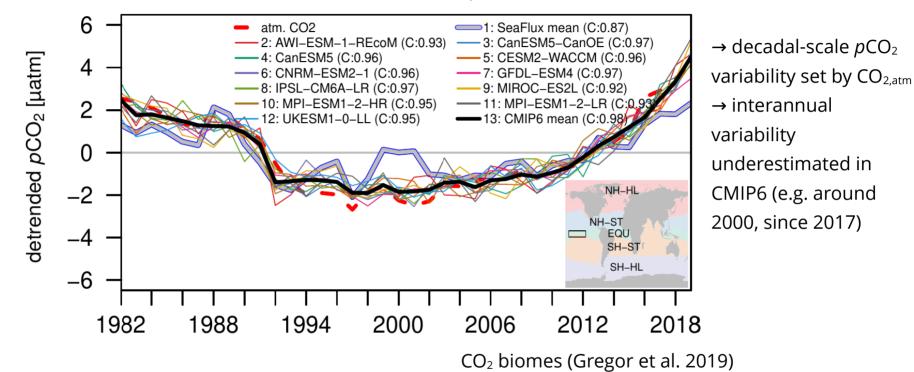


Global Carbon Budget (Friedlingstein et al. 2023)

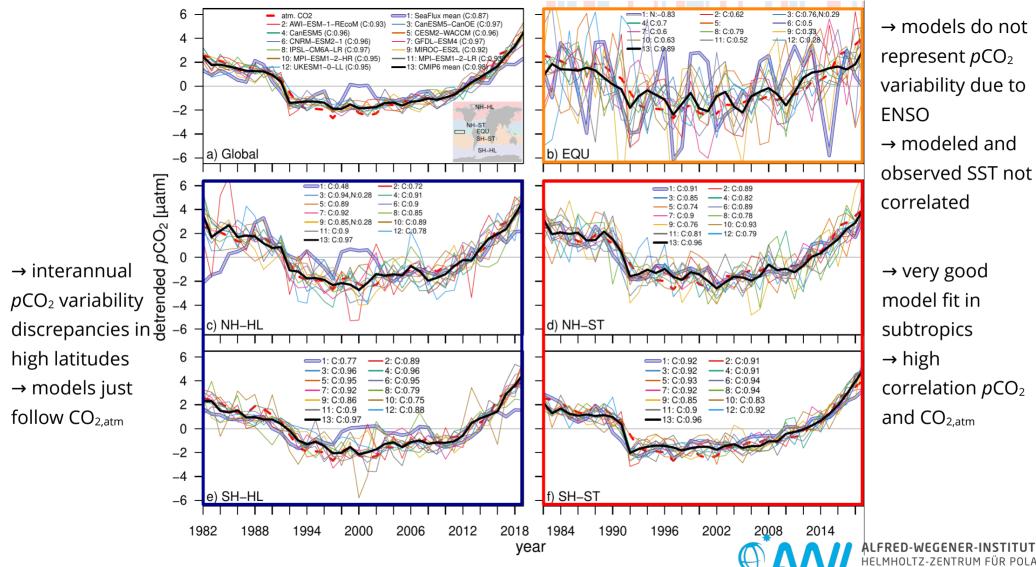
pCO₂-product **SeaFlux** (Gregor and Fay 2021)

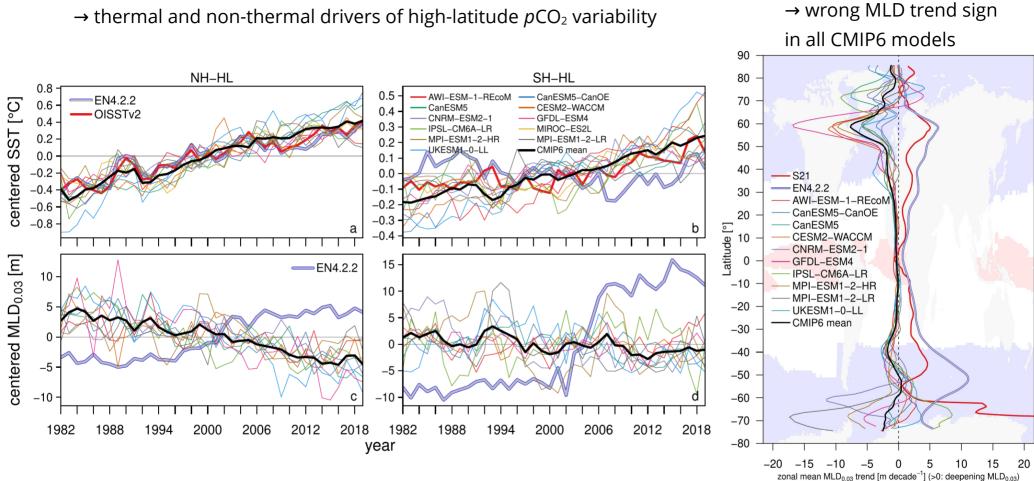
CMIP6 models & AWI-ESM-1-REcoM



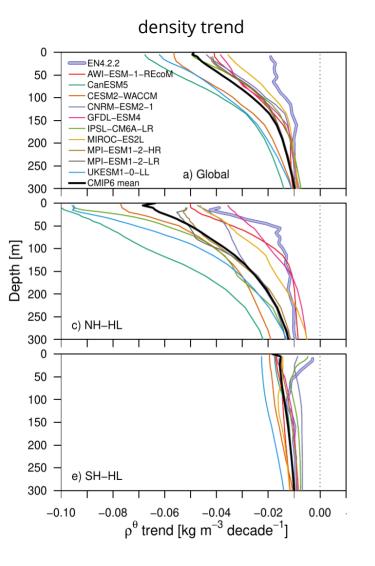


pCO₂-product **SeaFlux** (Gregor and Fay 2021)


CMIP6 models & AWI-ESM-1-REcoM


Global detrended pCO_2

HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

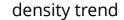


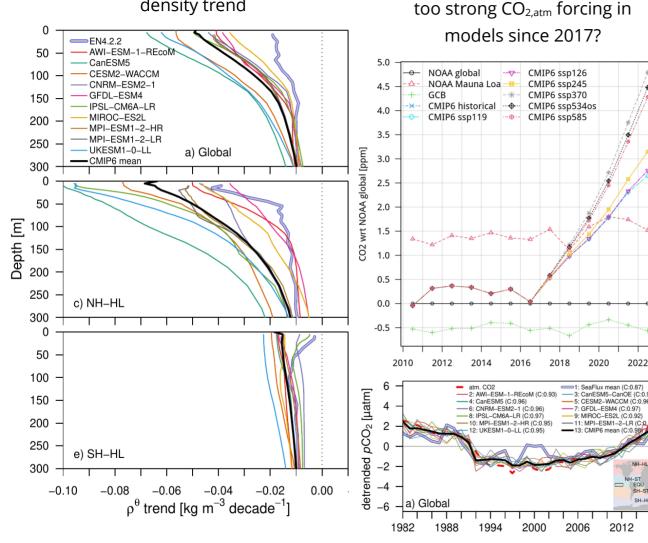
 \rightarrow thermal and non-thermal drivers of high-latitude *p*CO₂ variability

S21: Sallée et al. 2021

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-

UND MEERESFORSCHUNG


 \rightarrow CMIP6 models overestimate upper


ocean lightening

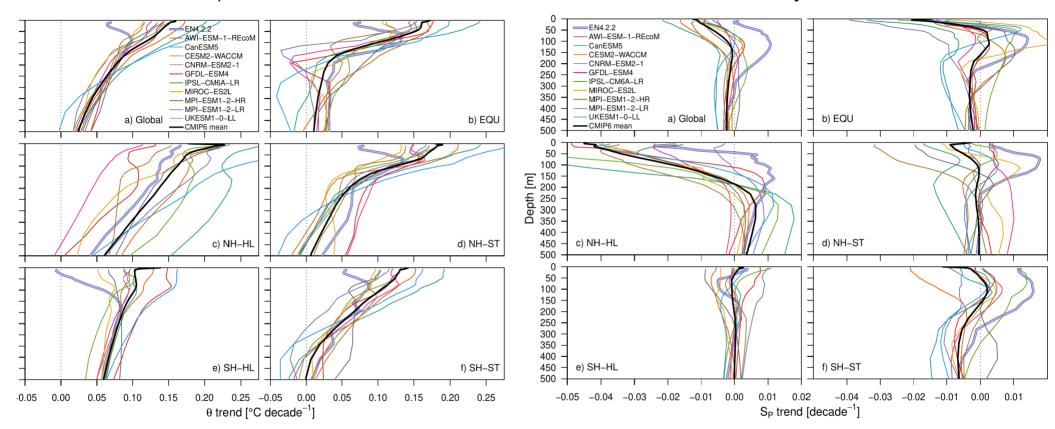
- \rightarrow flatter density profiles
- \rightarrow trend to shallower MLD, in contrast to observations
- \rightarrow inhibited vertical DIC transport in high-
- latitudes reduces pCO₂ variability
- \rightarrow not the case in temperature and
- CO_{2,atm}-driven subtropics
- ightarrow in line with previous work (McKinley et
- al. 2020, Bourgeois et al. 2022, Fu et al.

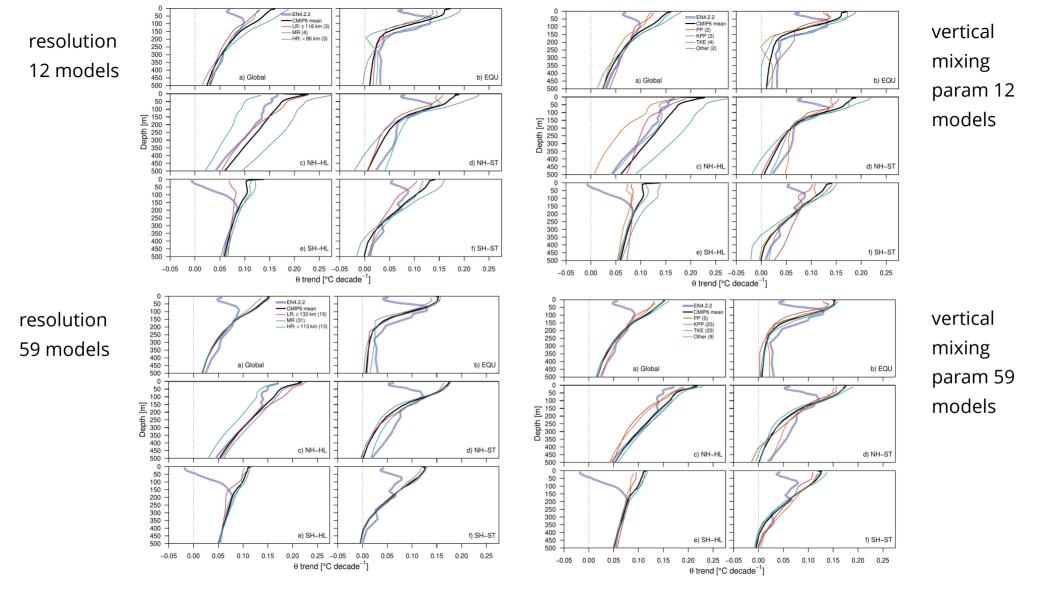
2022)

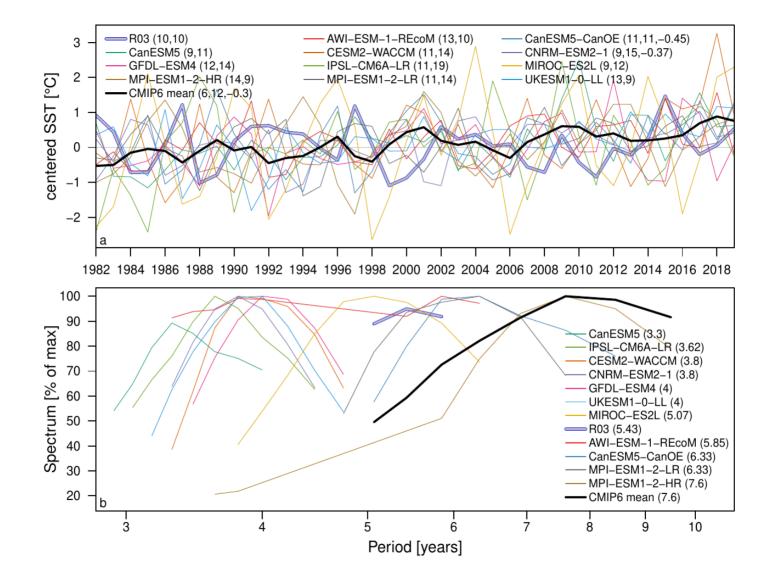
- \rightarrow CMIP6 models overestimate upper ocean lightening
- \rightarrow flatter density profiles
- \rightarrow trend to shallower MLD, in contrast to observations
- \rightarrow inhibited vertical DIC transport in highlatitudes reduces pCO₂ variability
- \rightarrow not the case in temperature and CO_{2,atm}-driven subtropics
- \rightarrow in line with previous work (McKinley et al. 2020, Bourgeois et al. 2022, Fu et al.

2022)

2018


Thank you! cdanek@awi.de


(refs and paper)



temperature trend

salinity trend

Table 1: Data sets used as predictors for multi-linear regression of the SeaFlux ensemble mean FCO_2 from 1990 to 2019 (30 years; Gregor and Fay, 2021). All time series were annually averaged, spatially averaged/integrated over the same area, and detrended (temporal linear trend removed). ∂ denotes temporal difference, i.e. $\partial X(t) = X(t) - X(t-1)$ for year t.

No.	Predictor	Description and reference		
1,2	$CO_{2,atm}, \partial CO_{2,atm}$	Atmospheric CO_2 concentration (Meinshausen et al, 2017)		
3-5	$pCO_{2,atm},$	Atmospheric and sea surface CO ₂ partial pressure (Gregor		
	$\partial p \mathrm{CO}_{2,\mathrm{atm}}, p \mathrm{CO}_2$	and Fay, 2021)		
6	$\Delta p \mathrm{CO}_2$	$p \text{CO}_2 - p \text{CO}_{2,\text{atm}}$		
7 - 10	W, W^2, W^3, W^4	Near-surface wind velocity from ERA5 (Copernicus Climate		
		Change Service, 2019)		
$11,\!12$	SST, ∂ SST	Sea surface temperature SST from ERA5 (Copernicus		
		Climate Change Service, 2019) or EN4.2.2 (Good et al, 2013) ^a		
$13,\!14$	SSS, ∂ SSS	Sea surface salinity SSS from EN4.2.2 (Good et al, 2013)		
$15,\!16$	SIE_N , SIE_S	Northern and southern hemisphere sea ice extent (Fetterer et al, 2017)		
17 - 20	$MLD_{0.01}, MLD_{0.03},$	Mixed layer depth (MLD) via potential density ρ^{θ} criteria		
	$MLD_{0.125}, MLD_{HT09}$	0.01, 0.03 and 0.125 kg m ⁻³ and from density algorithm of		
		Holte and Talley (2009), all based on EN4.2.2 (Good et al, 2013) ^b		
21	N34	Niño 3.4 anomaly index (Rayner, 2003) ^b		

^a Choice of SST data set did not substantially effect the regression results (not shown).

 $^{\rm b}$ See section 2.4.

Table 2: CMIP6 ESMs analyzed in this study and their ocean model component. \overline{d}_{\max} is the globally averaged horizontal ocean model resolution in km defined as $\sqrt{2 A_{\rm e}}$ with the surface area $A_{\rm e}$ of an irregular grid element for unstructured models (Danilov, 2022) or the maximum distance between horizontal grid cell vertices, i.e. $\sqrt{\Delta x^2 + \Delta y^2}$, for all other models (Taylor et al, 2018). $n_{\rm lev}$ is the number of vertical levels. The 'horizonal' and 'vertical' columns show tracer parameterizations utilized in the ocean model as identified in the given references (not meant to be complete; unstable stratification is compensated by some sort of fast and complete convection in all ocean models (Rahmstorf, 1993) and is omitted in the 'vertical' column). C87: Cox (1987), EPBL (energetic planetary boundary layer scheme): Reichl and Hallberg (2018), FFH: Fox-Kemper et al (2008), G95: Gent et al (1995), GM90: Gent and Mcwilliams (1990), KPP (k-profile parameterization): Large et al (1994), NK99: Noh and Jin Kim (1999), PP: Pacanowski and Philander (1981), R82: Redi (1982), TKE (turbulent kinetic energy scheme): Gaspar et al (1990).

No	ESM	Ocean model	\overline{d}_{\max}	$n_{\rm lev}$	horizontal	vertical
1	AWI-ESM-1- REcoM (Semmler et al, 2020, this study)	FESOM1.4 (Wang et al, 2014)	76	46	R82, G95	КРР
2,3	CanESM5{- CanOE} (Swart et al, 2019)	NEMO3.4.1 (Saenko et al, 2018)	116	${41,45}$	R82, GM90	TKE
4	CESM2-WACCM (Danabasoglu et al, 2020)	POP2 (Danabasoglu et al, 2012)	113	60	R82, GM90	KPP, FFH
5	CNRM-ESM2-1 (Séférian et al, 2019)	NEMO3.6 (Danabasoglu et al, 2014; Voldoire et al, 2019)	118	75	R82, GM90	TKE, FFH
6	GFDL-ESM4 (Dunne et al, 2020)	GFDL-OM4 (Adcroft et al, 2019)	59	75	R82, G95	EPBL, FFH
7	IPSL-CM6A-LR (Boucher et al, 2020)	NEMO3.6 (Boucher et al, 2020)	117	75	R82, GM90	TKE, FFH
8	MIROC-ES2L (Hajima et al, 2020)	COCO4.9 (Hasumi, 2015)	125	63	C87, GM90	NK99
9,10	MPI-ESM1-2- {HR,LR} (Mauritsen et al, 2019)	MPIOM1.63 (Marsland et al, 2003; Jungclaus et al, 2013)	{60,180}	40	R82, G95	PP, wind- driven turbulent mixing in mixed layer
11	UKESM1-0-LL (Sellar et al, 2019)	UK-GO6 (Storkey et al, 2018; Kuhlbrodt et al, 2018) based on NEMO3.6	117	75	R82, GM90	TKE