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A B S T R A C T   

Temperate mixed forest ecosystems are composed of various tree functional types (TFTs) that differ in canopy 
structure, phenology, and physiological response to climate change. An accurate characterization of the 
composition of these TFTs is important for quantifying land surface carbon, energy, and water cycling, as well as 
process-based simulation of forest dynamics. However, because the pixel size of satellite imagery is usually larger 
than temperate tree crowns, it is challenging to untangle the significant pixel-wise signal mixture of TFT across 
mixed forest regions. Spectral Mixture Analysis (SMA) has been widely used to derive the sub-pixel fractional 
composition of TFT from satellite imagery, but accounting for the broad spectral variability within TFTs across 
space and time remains a challenge. Synthetic aperture radar (SAR) can indicate biomass mixture information, 
but it has not been fully exploited for deriving subpixel TFT composition. To improve TFT composition mapping 
in mixed forest regions, we developed a Fisher-transformation-based Spectral and Radar Time-series Mixture 
Analysis (F-SRTMA) framework on Google Earth Engine. The F-SRTMA framework aims to address the space- 
time TFT variability of satellite signatures based on two modified modules: (1) the use of spectral and radar 
data with spatial and temporal information, and (2) feature optimization based on Fisher Discriminant Analysis 
(FDA). We tested the F-SRTMA at three representative temperate mixed landscapes located in the northeastern 
United States, where time-series Sentinel-1 and -2 data were used to calibrate our F-SRTMA approach. Airborne 
hyperspectral and LiDAR-derived canopy height data were used to generate ground reference TFT fraction maps 
for validation. The results demonstrate that (1) compared to the spectral time-series model, the synergy of 
spectral and radar time-series features yielded higher accuracy at the local sites (r2 = 0.649 vs. 0.680); (2) 
optimized feature based on FDA significantly minimized the within-TFT variability while maximizing the 
between-TFT variability, which further improved model generalizability across different landscapes, yielding the 
highest accuracy with cross-site r2 increasing from 0.634 to 0.715 and RMSE decreasing from 0.207 to 0.164. 
Collectively, these results suggest that F-SRTMA can be an accurate and generalizable approach for sub-pixel 
fraction mapping across temperate mixed landscapes, with the potential to be applied to other mixed forest 
ecosystems.   

1. Introduction 

Temperate mixed forest ecosystems are known for their 

heterogeneity, with their functioning significantly regulated by the di
versity of plant species (Anderegg et al., 2018; Espelta et al., 2020; Jung 
et al., 2021; Van Der Plas et al., 2016). Different groups of tree species 
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often exhibit distinct structural, physiological, and phenological traits 
that govern many important ecological processes related to plant func
tions (Dıáz and Cabido, 2001; Ustin and Gamon, 2010). Therefore, the 
composition of Tree Functional Types (TFTs) has often been used as a 
crucial indicator of forest functional diversity. Improving monitoring of 
TFT composition across environmental gradients is essential for better 
understanding the dynamics of mixed forests in relation to TFT func
tioning in carbon, energy, and water cycling, particularly under climate 
change (Cooley et al., 2022; Han et al., 2022; Poulter et al., 2015). 

The global accessibility of spaceborne observations has facilitated 
large-scale TFT monitoring (Van Cleemput et al., 2021). However, the 
relatively coarse spatial resolution of publicly available satellite imag
ery, such as Moderate-resolution Imaging Spectroradiometer (MODIS, 
500 m), Landsat (30 m), and Sentinel-2 (10-20 m) (Claverie et al., 2018; 
Sousa and Davis, 2020), presents challenges for accurately monitoring 
TFTs due to the widely evident TFT mixture in mixed forest ecosystems. 
The pixel size of these satellite images is typically much larger than the 
size of temperate tree crowns (e.g., crown diameter oftentimes is smaller 
than 10 m; Wu et al., 2021; Zhao et al., 2022a), leading to a pronounced 
mixed pixel problem where the spectral reflectance of a single pixel 
originates from a combination of different TFTs (Quintano et al., 2012). 
As a result, accurate characterization of TFT mixture processes using 
satellite remote sensing remains challenging, particularly in temperate 
regions where landscapes often comprise heterogeneous combinations 
of TFT due to the fragmented land forms and associated complex in
teractions of vegetation with climate, topography, and disturbance 
histories over large geographical areas (Box and Fujiwara, 2015). 

Generally, spectral mixture algorithms (SMA) have been used to 
effectively address the mixed pixel problem, in which individual image 
pixels are explicitly modeled as combinations of pure land cover signals, 
also known as endmembers (Settle and Drake, 1993; Shimabukuro and 
Smith, 1991). However, due to the high inter-class similarity of TFT 
spectra, the limited number of bands (typically 4–12 bands) in satellite- 
based multi-spectral imagery constrains the model’s unmixing capa
bility (Sousa and Davis, 2020; Wang et al., 2021). The recent advances in 
satellite remote sensing, such as Sentinel-2 with an increased temporal 
resolution, has created new opportunities to differentiate tree types by 
capturing their distinct phenology and physiological seasonal variability 
(Claverie et al., 2018). This has led to a focus on improving unmixing 
effectiveness based on the accumulation of dense multi-temporal im
agery (spectral time-series mixture analysis, STMA), instead of relying 
on mono-date imagery (Gómez et al., 2016). The addition of time-series 
imagery has been demonstrated to significantly improve TFT fractional 
mapping for different unmixing models, including semi-empirical 
models (i.e., vegetation indies-based dimidiate pixel model; Gao et al., 
2020; Yang et al., 2021) and physics-based models (i.e., linear/non- 
linear mixture model; Hemmerling et al., 2021; Nill et al., 2022; 
Schug et al., 2020; Sousa and Davis, 2020; Wang et al., 2021; Zhuo et al., 
2022), as well as machine learning (data-driven) models (Bolyn et al., 
2022; Okujeni et al., 2021; Senf et al., 2020). 

Despite these advances, current techniques for unmixing TFT frac
tions are exclusively based on spectral-only mixture models. These 
models can struggle to differentiate spectrally similar vegetation types, 
or fail to describe TFT variations due to uneven illumination in moun
tainous regions (Mendes et al., 2019; Waser et al., 2021). To tackle this 
issue, earlier studies have integrated radar imagery with spectral im
agery for discrete TFT classifications which resulted in enhanced accu
racy (Waser et al., 2021), indicating that this integration could be 
beneficial in improving the accuracy of TFT mixture analysis. Satellite- 
based radar data with wavelength at centimeter scale display distinct 
energy intensity that is related to vegetation surface roughness (Gior
dano et al., 2018; Li et al., 2019) and can be sensitive to seasonal 
changes in forest structure, such as the defoliation of deciduous trees 
(Dostálová et al., 2018; Ling et al., 2022; Tanase et al., 2019; Verheg
ghen et al., 2022). This is because the volume backscattering mechanism 
is intrinsically linked to canopy structure and biomass dynamics in space 

and time, with great potential to help improve the spectral-only 
unmixing models given its ability to estimate plant biophysical proper
ties, such as vegetation biomass or leaf area index (Englhart et al., 2011; 
Joshi et al., 2015). Similar to spectral mixture analysis, radar-based 
scattering mixture algorithms are effective in modeling scattering 
mixture mechanisms from land cover types with different structural 
attributes (Freeman and Durden, 1998; Giordano et al., 2018; Singh 
et al., 2019). Such radar-based mixture analyses have been widely used 
for land cover identification such as snow, ice, or water but have been 
underexplored for TFT fractional mapping (Arii et al., 2019; Ferguson 
and Gunn, 2022; Hillebrand et al., 2022; Parida and Mandal, 2020; Tian 
and Wang, 2022). 

To aid in the integration of spectral and radar time-series unmixing, 
Sentinel-1 is a particularly advantageous satellite source as it provides 
concurrent time-series radar data with Sentinel-2 multi-spectral data 
(Malenovský et al., 2012). This combination offers an unprecedented 
opportunity to assess the individual and combined impacts of spectral 
and structural information on TFT fractional mapping accuracy. Mean
while, the growing support of high computational cloud platforms with 
vast preloaded geospatial datasets and parallel processing capacity, such 
as Google Earth Engine, offers novel and timely opportunities for multi- 
source data reconstruction, facilitating large-scale mapping (Gorelick 
et al., 2017). 

When conducting large-scale TFT fractional mapping, the use of 
time-series and multi-source satellite data can provide more compre
hensive information than mono-date or spectral-only data. However, 
this increased data complexity may introduce insubstantial noise or 
unrepresentative bands into the unmixing process, which could ulti
mately affect the model’s generalizability across large landscapes. This 
noise amplification in satellite imagery can be attributed to factors such 
as cloud and snow cover, shadows, topographic effects, and speckle for 
radar data, all of which contribute to increased spatial and temporal 
variability of spectral and/or radar features within TFT and reduce the 
between-TFT feature contrasts (Wang et al., 2021; Zhao et al., 2022b; 
Zhuo et al., 2022). Moreover, the environmental gradient across large 
scales can also enhance the within-TFT spectral and structural vari
ability, which further reduces the endmember representativeness across 
space and time (Hemmerling et al., 2021; Sousa and Davis, 2020). To 
minimize the effect associated with this space-time variability in large- 
scale unmixing models, researchers often employ either (1) endmember 
selection to improve endmember library representativeness or (2) band 
features optimization to improve feature representativeness (Somers 
et al., 2011). While the former approach solely focuses on accounting for 
variable mixture conditions with respect to within-TFT variability, the 
latter approach is more effective because it could suppress the effect 
from both within-TFT and between-TFT endmember variability (Jin 
et al., 2010; Liu et al., 2017; Xu et al., 2019). One possible solution to the 
latter approach is Fisher Discriminant Analysis (FDA; Okada and 
Tomita, 1985). This kind of supervised data transformation method can 
convert high-dimensional data inputs into a low-dimensional feature 
space, where between-class endmember variability is maximized while 
within-class endmember variability is minimized, thus generating more 
representative features for complex landscapes. Several recent studies 
also have demonstrated the great effectiveness of the FDA in resolving 
the model transferability issue in impermeable surface monitoring (Liu 
et al., 2017; Ouyang et al., 2022; Xu et al., 2019). However, its ability to 
improve endmember generalizability in TFT fractional mapping remains 
underexplored. 

The goal of this study is to explore whether the Fisher- 
transformation-based Spectral and Radar Time-series Mixture Analysis 
(F-SRTMA) framework can be an effective and accurate way to improve 
TFT fraction monitoring in temperate mixed forests across large land
scapes using Sentinel-1 and -2 time-series imagery. To address the space- 
time variability of TFT signatures across large heterogeneous land
scapes, the F-SRTMA framework utilizes both spatial and temporal in
formation from spectral and radar data and performs an additional 
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feature optimization based on FDA. As our focus, we tested the F-SRTMA 
at a representative temperate mixed forest ecoregion located in Wis
consin, USA, and aimed to answer the following two questions:  

1) To what extent could the integration of spectral and radar time-series 
imagery improve the accuracy of TFT fractional mapping?  

2) Will the embedding of FDA with SRTMA help increase model 
generalizability across different landscapes? 

2. Study sites, materials, and methods 

2.1. Study sites 

This study focused on the northern upland conifer-hardwood mixed 
forest ecoregion in Wisconsin, United States, which experiences a con
tinental climate, characterized by long, cold winters and short, warm 
growing seasons. The mean annual temperature of the ecoregion is 
approximately 3 ◦C, and the mean annual precipitation is around 800 
mm (Mackay et al., 2002). The ecoregion is mosaicked by a dynamic 
composition of deciduous and evergreen TFT, including deciduous 
broadleaf hardwoods, evergreen conifers, deciduous conifers, shrubs, 
and grasses. Based on the differences in leaf habit (evergreen and de
ciduous) and leaf forms (broadleaf and needle-leaf), we grouped 
temperate tree species into three types of interest: deciduous broad
leaved tree (DBT), evergreen needle-leaved tree (ENT), and deciduous 
needle-leaved tree (DNT). The remaining land covers were grouped as 
non-forest (nonF) class and water (W) class. 

Within this ecoregion, we selected three sites (Fig. 1) from the Na
tional Ecological Observatory Network (NEON) to evaluate our pro
posed F-SRTMA method. These sites are the University of Notre Dame 
Environmental Research Center (UNDE, 46.21◦ N, 89.51◦ W), Stei
gerwaldt (STEI, 45.50◦ N, 89.50◦ W), and Chequamegon (CHEQ, 45.81◦

N, 90.08◦ W). 
We chose these sites for two reasons. First, each of them has unique 

site characteristics that are representative of the TFT compositional 

complexity and space-time feature variability across the ecoregion, as 
they differ considerably in terms of hydrological regime (UNDE), 
disturbance history (STEI) and topography (CHEQ) according to the 
NEON site description (https://www/.neonscience.org/field-sites). 
Specifically, UNDE has many scattered small lakes surrounded by wet
lands, with deciduous conifers dominating most of the wetlands. Thus, 
the background water signal would affect the remotely sensed vegeta
tion signal from space. STEI is a site with intensive human interruption, 
and the landscape is also composed and contaminated by the remote 
sensing signals associated with seasonal crops, urban areas, and plan
tations. CHEQ exhibits relatively complex topographic conditions that 
affect the illumination and radar backscatter observed from space. As 
such, these sites and their associated unique site characteristics can 
serve as an excellent testbed not only for testing the accuracy of our 
proposed method but also for helping to examine the generalizability 
issue of the proposed method when applying the method developed at 
one site to other sites. Secondly, relevant ‘ground truth’ data to evaluate 
our remote sensing methods is available at these sites. NEON has con
ducted annual airborne surveys since 2015, with a very high spatial 
resolution (1 m) airborne hyperspectral and LiDAR imagery. These 
airborne data would generate accurate classification results, serving as 
‘ground truth’ to evaluate our remote sensing methods in a wall-to-wall 
manner. 

2.2. Materials 

We used three types of data in this study: (1) airborne hyperspectral 
and LiDAR data, (2) Sentinel optical reflectance (Sentinel-2) and radar 
(Sentinel-1) data, and (3) auxiliary land cover maps (from NEON 
airborne products and several land cover products). 

2.2.1. Airborne hyperspectral imagery and canopy height products 
To validate our F-SRTMA method, we used high-resolution (1 m) 

airborne hyperspectral images and canopy height product (level 1) data 
acquired from the NEON Airborne Observation Platform (Kampe et al., 

Fig. 1. The autumn land surface condition (using Sentinel-2 R-G-B composite image) within the Wisconsin northern upland mixed forest ecoregion, featuring three 
distinct validation sites (UNDE, CHEQ, and STEI) and three target tree types (DNT, ENT and DBT) for fraction estimation purpose. 
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2010). The hyperspectral image data consists of 426 bands ranging from 
380 to 2510 nm with a 5 nm spectral resolution. We downloaded the 
data for the year 2020 from https://data.neonscience.org/ to match 
with Sentinel satellite imagery. We employed a spectral-spatial residual 
network (SSRN) deep learning model, specifically a 3D-CNN model 
(Zhong et al., 2018), to classify each landscape pixel into three tree types 
(i.e., DBT, DNT, ENT)and a non-forested type (nonF). We chose the 
SSRN model for its ability to handle high collinearity commonly existing 
in spectroscopic data and its delivery of state-of-the-art classification 
performance (Zhong et al., 2018). 

There were two steps involved in the SSRN classification. First, to 
create training and validation data, we manually labeled different land 
cover types (total pixel amount = 1.62 × 106

, DBT = 7.91 × 105, ENT =
2.71 × 105, DNF = 1.22 × 105, nonF = 4.35 × 105) based on sub-meter 
historical winter and summer images of the same sites from the ESRI 
World Imagery Wayback archive (https://livingatlas.arcgis.co 
m/wayback) and Sentinel-2 winter imagery. Second, to train and eval
uate the SSRN model, we followed Wong and Yeh (2020) and used a 5- 
fold cross-validation method with both airborne hyperspectral imagery 
and canopy height map as model input. To balance the contribution of 
spectral and structure information to the classification model, we 
reduced the hyperspectral data from the original 426 bands to 10 bands 
using the Minimum Noise Fraction method (MNF; Roger, 1996) 
(Fig. S1). The resulting classification had a very high overall accuracy of 
~0.93 (Table S1), indicating that it can be a reliable benchmark to 
evaluate satellite-based fraction estimations. To evaluate satellite- 
derived TFT fractions (at a 10 m resolution), we further resampled 
these 1 m resolution classifications and upscaled them to generate a 10 
m resolution fractional composition of our targeted TFT (i.e., DBT, DNT, 
ENT, and nonF). 

2.2.2. Optical and radar sentinel data 
To test our F-SRTMA method, we used the Sentinel-2 Multispectral 

Instrument data operated by the European Space Agency. Specifically, 
the Sentinel-2 level 2 A imagery with a 5-day revisit time covering the 
full year of 2020 was accessed via the Google Earth Engine (GEE). We 
selected four 10 m spectral bands (blue, green, red, and near-infrared 
bands) and six 20 m spectral bands (3 red-edge, 1 near-infrared and 2 
short-wave infrared bands) and fused them to a 10 m resolution using 
the nearest neighbor method. To minimize snow and cloud contamina
tion, we first excluded imagery in the snowy season from December to 
March, as well as imagery with >50% cloud coverage based on the 
provided CLOUDY_PIXEL_PERCENTAGE parameter. Then, for the 
remaining imagery, we filtered cloudy pixels based on Sentinel-2 cloud 
probability bands (i.e., cloud probability>10%), and snow- 
contaminated pixels based on a thresholding method (i.e., NDSI>0) 
using Normalized Difference Snow Index (NSDI) following Gascoin et al. 
(2019). In addition, to minimize solar and sensor view angle effects, we 
conducted an image-specific Bidirectional Reflectance Distribution 
Function (BRDF) normalization following the same method as Claverie 
et al. (2018). We also performed a path length correction algorithm to 
minimize the topography effects following Yin et al. (2018). 

In addition, we accessed Sentinel-1 Level 1 Ground Range Detected 
(GRD) imagery with a 12-day revisit time covering the full 2020 year via 
GEE. Sentinel-1 GRD imagery provides backscatter coefficients (σ◦) in 
decibels (dB) based on the Interferometric Wide Swath mode, with a 10 
m resolution and dual-polarization signals (i.e., vertical transmit- 
vertical receive, VV, and vertical transmit-horizontal receive, VH). 
Since the values of backscattering coefficients (σ∘

VV and σ∘
VH) typically 

vary with the incidence angles (ranging from 29◦ to 46◦), we normalized 
both the σ∘

VV and σ∘
VH values to a reference angle of 38◦ based on a dy

namic cosine model (Feng et al., 2021) to reduce this effect. Then, we 
followed Mullissa et al. (2021) to convert the dB values of σ∘

VV and σ∘
VH to 

linear power unit as 10σ∘/10 (ranging from 0 to 0.3). To minimize the 
effect of topography, we utilized the US 10 m resolution Digital 

Elevation Model on GEE for terrain correction, following the method of 
Vollrath et al. (2020). We also reduced the speckle based on a refined- 
Lee filter with a 5 × 5 pixel window, following Yommy et al. (2015). 
Although Sentinel-1 data are insensitive to atmospheric conditions, its 
information can be contaminated by wet underground and snow cover 
(Dostálová et al., 2018), leading to significant data uncertainty during 
snowmelt and wet seasons. To eliminate these related extreme values 
and outliers, we implemented pixel-wise outlier detection based on a 5- 
year time-series (2018–2022) of two polarizations (VV and VH) in both 
snow and wet seasons. This method removes observations outside the 
interquartile range, which is the lower 10% to upper 90% quantiles of 
the two polarizations, respectively. 

2.2.3. Auxiliary land cover data 
To evaluate the advantage of fraction mapping on ecoregion-wise 

TFT, we cross-compared our results with another two discrete classifi
cation maps of non-forest type based on two published land cover data: 
WorldCover 2020 (WC) land cover products with a 10 m resolution 
(Zanaga et al., 2022) and Global Forest Canopy Height 2019 (GCH) with 
a 30 m resolution (Potapov et al., 2021). WC is a land cover product 
generated based on the Sentinel-2 and Sentinel-1 constellations, with 
demonstrated high accuracy globally (Zanaga et al., 2022). The product 
can be accessed via https://worldcover2020.esa.int/. GCH was devel
oped through an integration of the Global Ecosystem Dynamics Inves
tigation (GEDI) LiDAR data and Landsat analysis-ready time-series data 
with satisfactory accuracy (Potapov et al., 2021). This product can be 
accessed via https://glad.umd.edu/dataset/gedi/. We created two bi
nary maps of forest and non-forest based on the ‘Tree cover’ type of WC 
and pixels with canopy height > 3 m from GCH, respectively. We con
verted these two discrete maps into fraction format by resampling their 
spatial resolution to 90 m. Both maps demonstrated a moderately strong 
correlation with the airborne LiDAR-derived nonF benchmark at three 
validation sites, exhibiting correlation coefficients of 0.740 and 0.757, 
respectively. These two forest maps were used as an independent com
parison product for our estimated ecoregion-wise forest fraction map 
(Section 3.5 and 4.3). 

2.3. Methods 

The F-SRTMA framework includes three main tasks. First, a data 
fusion approach is conducted to reconstruct spectral-radar time-series 
(SRT) features that minimize noise over time and improves feature 
comparability across sites. Second, the endmembers are extracted based 
on ground reference and a spatial-guided purity metric is used to 
constrain imagery-wise endmember extraction. Third, FDA is conducted 
on the extracted endmembers and associated SRT features, aiming to 
increase the feature contrast (i.e., minimizing intra-TFT variability and 
maximizing inter-TFT variability) and thus improve the feature repre
sentativeness across large regions. 

2.3.1. Reconstruction of high-quality SRT features 
There are two issues to be addressed in constructing high-quality SRT 

features for unmixing models: 1) data missing across time-series images 
associated with cloud/snow contamination, and 2) signal anomalies 
across the time frame caused by environmental factors such as topog
raphy and weather or sensor/preprocessing errors. Existing time-series 
unmixing models address these issues by using only clear-sky satellite 
time series (Wang et al., 2021; Zhuo et al., 2022). However, this 
approach limits model generalizability as clear-sky images collected at a 
specific combination of time stamps are not always available at different 
sites or across different years. To make SRT features applicable on a 
broad scale, we developed a method to gap-fill Sentinel time series data 
and derive SRT features with even time intervals. Details about the 
reconstruction method are described below. 

To resolve the data missing or anomalies across Sentinel-1 and -2 
data time series due to the quality-controlled processes in Section 2.2.2, 
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we applied a pixel-wise gap-filling method on each spectral band with 
three sub-steps. First, we calculated the median value for each time
stamp based on 5-year (2018–2022) Sentinel-1 and -2 data, respectively. 
Second, for each target pixel in 2020 with a missing value, we gap-filled 
it with the 5-year median value of the corresponding time stamp if 
available. Third, if the valid median value was unavailable, we used the 
monthly average as a reasonable proxy of that pixel in 2020 for gap- 
filling. To further minimize potential data anomalies, we imposed a 2- 
order Savitzky–Golay filter following Chen et al. (2004) with a 2-order 
linear regression smoother at a 7-week window. Lastly, to keep the 
time interval consistent across different locations, we resampled the 
Sentinel-1 and -2 data into a monthly median format (Table 1). 

2.3.2. Extractions of candidate endmember pixels 
The representativeness of endmembers directly impacts sub-pixel 

fractional mapping accuracy (Roth et al., 2012). Identifying high- 
quality endmembers in temperate mixed forests from satellite imagery 
is particularly challenging, due to the substantial variability in spatial 
and temporal remote sensing signals within TFTs and the broad spectral 
similarity between TFTs, which are influenced by phenological diversity 
and environmental factors. To address these challenges associated with 
our spectral-radar time series features, we turned to spatial-guided 
endmember finding methods, which are highly appliable for diverse 
remote sensing features and large landscapes due to their unsupervised 
nature (e.g., Mei et al., 2010; Shi and Wang, 2014). 

In this study, we investigated an automatic morphological end
member extraction method (Plaza et al., 2002). This method utilizes the 
morphological eccentricity index (MEI), a spatial-guided purity index, to 
extract endmember candidates. We encountered challenges when using 
the default MEI index for TFT purity estimation. The default MEI method 
defines the degree of purity based on the spectral distance between 
mixed and pure pixels in the neighborhood. While the spectral distance 
method works well for differentiating land covers that have significantly 
different spectra, such as forests and water bodies, it becomes less 
effective for distinguishing between different TFTs that have relatively 
small spectral differences (Fig. S2b). To address the limitations of the 
default MEI method in differentiating TFTs with similar spectral char
acteristics, we adopted a two-step preprocessing before MEI calculation: 
1) removing non-vegetation land covers to focus only on vegetated 
surfaces; 2) maximizing feature variation of vegetation by using Prin
cipal Component Analysis (PCA)(Jolliffe, 2011). Our further analysis 
confirmed that the PCA-based MEI method is indeed more effective in 
searching pure pixels compared to the MEI based on the original remote 
sensing features (Figs. S2b vs. S2c). In detail, our endmember extraction 
process includes the following four steps: 

Step 1: Derive a vegetation-specific PCA map to enhance the sensi
tivity of MEI to TFTs. We first removed non-vegetation land covers based 
on a NDVI threshold (yearly medium NDVI <0.5)(Carlson and Ripley, 
1997). Then, we performed a PCA analysis on the spectral-radar time 
series imagery focusing only on the remaining vegetation pixels, 
generating a vegetation-specific PCA map to enhance the contrast be
tween TFTs. 

Step 2: Derive a PCA-MEI map to extract the endmember candidates. 
Following Plaza et al. (2002), for each image pixel, we applied two 
mathematical morphology operators, dilation and erosion, to the first 
three components of the vegetation-specific PCA map. Dilation selects 
the brightest pixel, and erosion selects the darkest pixel in the N × N 
pixel neighborhood of PCA map. MEI is calculated as the feature angle 
distance (FAD; Eq. (1)) between the dilation and the erosion map, with a 
higher MEI indicating a higher degree of “eccentricity” compared to its 
neighbors and thus a higher likelihood of the pixel’s purity. Based on the 
calculated MEI map, we created the candidate endmember map using 
the Otsu method (Otsu, 1979), with the derived threshold TMEI set to 
0.78 and the endmember candidate map determined by MEI > TMEI. 

MEI = FAD(A,B) = cos− 1
(

AB
‖A‖‖B‖

)

= cos− 1

( ∑n
i=1AiBi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1AiAi

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1BiBi

√

)

(1)  

where A and B denote the 1 × 3 vector from PCA-based dilation and 
erosion maps respectively; n denotes the amount of neighbor pixels 
within the N × N search window. 

Notably, the MEI index requires both pure and mixed pixels to 
coexist within neighboring kernels, also known as the transition region 
of two land covers. If the search window is not large enough to cover this 
“transitioning” from purity to mixtures, such as in homogenous regions, 
MEI could underestimate pixel purity (Plaza et al., 2002). In order to 
capture a wider range of mixture gradients and enhance recognition in 
both homogeneous and transition regions, we followed the approach 
outlined by Plaza et al. (2002). By increasing the search window size, we 
observed improved results, as depicted in Figs. S2c and S2d. To deter
mine the optimal window size, we conducted a sensitivity test and found 
that an N × N window size of 41 × 41 pixels yielded the best perfor
mance, as shown in Fig. S2e. It’s worth noting that when applied this 
method to other landscapes, the optimal search radius size can be 
automatically approximated based on the variogram range of spatial 
autocorrelation analysis (Yang et al., 2023). 

Step 3: Endmember type determination. After identifying the 
candidate endmember pixels, we overlaid the candidate map of each site 
with its corresponding airborne-derived TFT fraction map (Section 
2.2.3) to assign each candidate pixel to its dominant endmember class. 
In addition to TFTs, non-forest (nonF) endmembers were determined 
based on canopy height data (CHM < 3 m), while water endmembers 
were selected using a NDWI threshold (yearly median NDWI >0.05) 
(McFeeters, 1996). 

Step 4: Construction of the SRT endmember library. To account for 
potential large within-class endmember variability, we followed Xu 
et al. (2019) and extracted multiple endmembers (sub-class) for each 
land cover type. Specifically, we used the K-means clustering method for 
automatically identifying sub-classes. The resulting endmember bundle, 
which includes K endmembers (sub-classes) for each land cover type, 
was used as the final endmember library. Since the number of K could 
affect the final unmixing results, we conducted a sensitivity analysis to 
determine the optimal K value. In this analysis, K ranged from 1 to 15 
with an interval of 2, and the model’s performance was assessed using 
airborne-derived TFT fraction maps. Fig. S3 illustrates that K = 7 and K 
= 1 achieved optimal performance for the model without and with FDA, 
respectively. 

2.3.3. SRT-based mixture analysis (SRTMA)  

(1) MESMA 

We estimated TFT fractions based on an advanced unmixing mod
el—Multiple Endmember Spectral Mixture Analysis (MESMA) (Roberts 
et al., 1998), which has been demonstrated to effectively cope with 
within-class endmember variability (Degerickx et al., 2019). This is 
because MESMA allows using varied endmember combinations for each 

Table 1 
Time-series Sentinel − 1 and − 2 features used in Spectral and Radar Time-series 
Mixture Analysis.  

Satellite Band 
selection 

Spatial 
resolution 
(m) 

Acquisition time Temporal 
resolution 

No. of 
feature 

Sentinel- 
1 

VV, VH 10 2020.04–2020.11 Monthly 
average 

16 (=2 
× 8) 

Sentinel- 
2 

B2-B4, 
B8 

10 2020.04–2020.11 Monthly 
average 

32 (=4 
× 8) 

B5-B7, 
B8A, 

B11, B12 

20 2020.04–2020.11 Monthly 
average 

56 (=7 
× 8)  
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pixel instead of a fixed one. This assumption can better cope with reality, 
where the number of mixture types at a 10 m resolution is typically 
around three, which is much less complex than the number of the entire 
endmember library (Okujeni et al., 2021). To perform MESMA, we 
searched for the most representative 3-endmember combinations for 
each mixed pixel by iterating through all possible 3-endmember com
binations from the library. For each iteration of the 3-endmember sub
set, we used pixel-wise linear spectral mixture analysis (Eq. (2)) to 
estimate the subpixel abundance. 

Y = XA+ e (2)  

where Y is n × 1 vector of features for each pixel; X is the n × m matrix of 
endmembers; n (=number of feature bands; Table 1) and m (=3; end
members selected from the library) denote the number of feature bands 
and endmembers, respectively. e is the systematic error/model residual. 
A is the m × 1 vector of the estimated abundances, which is solved based 
on a least-squares optimization algorithm (Bro and Jong, 1997), and the 
derived abundances are subject to the “sum-to-one constraint” and “non- 
negativity constraint” (Heinz and Chein-I-Chang, 2001). Among the 
abundances estimated for different endmember subsets, we selected the 
abundance estimate from the best model with the lowest residual to 
obtain the final TFT-specific abundance.  

(2) FDA-based MESMA 

To optimize endmember representativeness, we applied a supervised 
dimensionality reduction method known as Fisher’s discriminant anal
ysis (FDA) to transform the SRT features into Fisher features. The FDA 
method was chosen for its effectiveness in enhancing the inter-class 
endmember variability while reducing the intra-class endmember vari
ability, as demonstrated in previous studies (Liu et al., 2017; Ouyang 
et al., 2022; Xu et al., 2019). Our aim was to address the challenge of low 
model generalizability across different sites while making little-to-no 
sacrifice on within-site model accuracy. For detailed information on 
the mathematics underlying the FDA method, interested readers can 
refer to Xu et al. (2019). 

Here, we implemented FDA using three sub-steps. First, we utilized 
the previously derived endmember library as input for FDA to identify 
projection directions that would optimize the distance between data 
points of different endmember classes when minimizing the distance 
within each class. This resulted in a Fisher transformation projection 
vector V = {v1, v2, …, vk-1}, with a dimension of (k-1) × n (where n is 
number of the features, k is the number of endmember types and in this 
study k = 5). Second, we transformed the original features into k-1 
Fisher features based on projection vector V. By applying this feature 
dimensional reduction, Eq. (2) was converted into Eq. (3), as shown 
below. 

VY = VXA+ e (3)  

where V refers to the FDA projection vector, while A, X, Y and e are the 
same as those shown in Eq. (2). 

In a pixel-wise iterative procedure, we searched for the best estimate 
in the obtained Fisher feature space. By solving the abundance vector A 
in Eq. (3) for each of the 3-endmember combinations following Heinz 
and Chein-I-Chang (2001), we chose the combination with the lowest 
model residual e to determine the corresponding land cover types and 
their abundances. This process was conducted on a pixel basis for the 
whole image. 

2.3.4. Analytical experiments and model evaluations 
To examine the accuracy and cross-site generalizability of F-SRTMA, 

we conducted four analyses. The first analysis aimed to assess the 
separate and joint contributions of spectral, radar, and temporal features 
to the accuracy of TFT fractional mapping. We compared the MESMA 
models with different features as model inputs, including 1) Spectrum of 

the annual median (mono-S), 2) Radar Time-series (RT), 3) Spectral 
Time-series (ST), 4) Spectral and Radar Time-series (SRT), and 5) Fisher 
features derived from Spectral and Radar Time-series (FDA-SRT). To 
evaluate inter- and intra-site performance with comparable settings, for 
each site, we conducted an independent 3-fold spatial cross-validation. 
For this, we divided each site into 2 km × 2 km sub-tiles, which were 
split into three groups, with each group being used iteratively for 
unmixing and validation while the other two groups were reserved for 
endmember extraction. 

The second analysis aimed to examine whether the FDA method 
suppresses feature space-time variability and improves cross-site model 
generalizability. For this purpose, we first compared the within-class 
and between-class feature variability within the FDA and PCA space. 
Then, we compared two modeling scenarios with and without FDA for 
different feature combinations. 

The third analysis aimed to evaluate the model’s generalizability 
across large landscapes. We designed a non-local-based endmember 
scenario, in which a site-specific endmember library was first extracted 
and then applied to the other two sites. We conducted non-local end
member scenarios for different feature combinations across three sites, 
and compared the accuracy of the non-local scenarios with the local- 
based endmember scenarios from the second analysis. 

The fourth analysis aimed to upscale F-SRTMA for TFT fractional 
mapping across the entire ecoregion in Fig. 1. We coded our F-SRTMA 
method on GEE, from which we derived the ecoregion map of TFT 
fractions. To demonstrate the necessity of fractional mapping in het
erogeneous landscapes, we cross-compared the derived non-forested 
(nonF) fractions with two state-of-the-art non-forest products (WC and 
GCH) on the ecoregion scale. 

We used benchmark data from the airborne-derived TFT fraction 
map for validation. We employed four widely-used validation metrics in 
unmixing studies (Nill et al., 2022; Powell et al., 2007; Senf et al., 2020): 
Root Mean Square Error (RMSE), square of correlation coefficient (r2), 
coefficient of determination (R2), and the slope and intercept of a 
regression line. RMSE quantifies the absolute model error, r2 and R2 

quantify the goodness-of-fit in models, and slope and intercept indicate 
the model systematic error and bias. The validation data were evenly 
sampled from low to high fraction intervals (i.e., 0.1–0.2, 0.2–0.3, 
…,0.9–1.0), with 100 randomly sampled pixels per fraction interval. 
Note that potential geolocation errors in Sentinel imagery can add up to 
>12 m and introduce noise and associated uncertainties when vali
dating, and the downscaling of 20-m Sentinel-2 bands to 10-m also 
introduce the observational errors for pixel-wise unmixing models. This 
is especially pronounced for those TFTs with rare-to-subdominant 
abundance (Cohen et al., 1990; Schubert et al., 2017). To balance out 
uncertainties from potential geolocation errors across different datasets 
and spatial scales of different bands, we followed Wang et al. (2023) to 
conduct validation at patch level (i.e., the mean value at a 90 m × 90 m 
square area). We further conducted a sensitivity analysis on the evalu
ation accuracy across a range of patch sizes from 30 m to 110 m with an 
interval of 20 m. Our findings indicate that 90 m is the optimal size as it 
minimizes geolocation errors between different data sources (Fig. S4). 

3. Results 

3.1. Temporal patterns of TFT endmembers 

Our analysis of endmembers’ seasonal patterns (Fig. 2) reveals that 
different bands in the Sentinel-2 sensor capture various ecological dy
namics, including seasonal changes in leaf color, quantity, and potential 
leaf biochemistry, and these ecological dynamics vary considerably 
across TFTs. For instance, broadleaf forests generally exhibit higher 
concentrations of chlorophyll, resulting in a lower reflectance in the red 
band compared to needleleaf forests. Additionally, the highly clumped 
structure of coniferous forests leads to lower overall reflectance for ENT 
and DNT compared to DBT. 
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In terms of seasonal reflectance patterns, DBT and DNT exhibit more 
pronounced reflectance seasonality in visible and near-infrared bands, 
indicating the phenological changes in leaf color and leaf quantity (e.g., 
leaf on/off) on the ground that can be sensed by Sentinel-2 satellites. 
ENT reflectance also exhibits a smaller (and moderate) degree of sea
sonality across most bands. The seasonality of the red-edge and near- 
infrared bands (B6-B8A) is almost identical, indicating a strong rela
tionship between these bands in capturing changes related to vegetation 
growth, health, and senescence. Furthermore, the reflectance of TFT 
endmembers shows significant overlaps with that of nonF type, sug
gesting that distinguishing TFTs solely based on spectral information 
can be challenging due to their similar spectral characteristics. 

Regarding SAR patterns, we observed that both VV and VH polari
zations are sensitive to surface structures (Fig. 2k and l). The nonF type 
in SAR data exhibits greater separability compared to the Sentinel-2 
bands (Fig. 2a-h). In terms of canopy scattering, conifer trees display 
higher values in both VV and VH bands compared to broadleaf trees. The 
volume scattering between DNT and ENT is nearly comparable, with 
DNT exhibiting higher values than ENT, indicating higher tree density 
for DNT compared to ENT. Additionally, DBT exhibits distinct seasonal 
patterns in VH while showing less significant seasonal patterns in VV 
values, which can be attributed to VH being more sensitive to randomly 

oriented structures, such as tree canopies, while VV is more responsive 
to linearly oriented structures like surfaces and trunks(Flores-Anderson 
et al., 2019). 

3.2. Evaluating the effectiveness of SRT features for TFT fractional 
mapping 

We investigated the performance of different feature combinations 
on sub-pixel TFT fractional mapping. Among the four non-FDA feature 
scenarios examined (Table 2), SRT features yielded the highest overall 
accuracy (RMSE = 0.176, r2 = 0.680) across all study sites, followed by 
ST (RMSE = 0.180, r2 = 0.649), RT (RMSE = 0.210, r2 = 0.576), and 
mono-S (RMSE = 0.222, r2 = 0.550). We found that the contribution of 
different features to unmixing is different at the TFT level (DBT, DNT, 
and ENT). For instance, radar time-series data were found to be the most 
capable of identifying the cover of DBT, but less efficient for differen
tiating ENT and DNT (r2 = 0.694, 0.577 and 0.427). Unlike radar time- 
series, spectral time-series data were more effective at estimating ENT, 
followed by DBT and DNT (r2 = 0.736, 0.717 and 0.501). 

The combined use of spectral and radar time series (SRT) resulted in 
a further increase in overall accuracy compared to spectral time (ST) 
features alone. This improvement is evident in the increase of r2 from 

Fig. 2. Seasonal patterns for endmembers on a monthly timescale from April to November, including means (in lines) and standard deviations (in color shading), 
across various Sentinel-2 and Sentinel-1 bands. Sentinel-2 bands are represented as follows: (a) visible blue, (b) visible green, (c) visible red, (d) red edge 1, (e) red 
edge 2, (f) red edge 3, (g) near-infrared 1, (h) near-infrared 2, (i) short-wave infrared 1, and (j) short-wave infrared 2. Sentinel-1 bands are depicted as (k) VV, and (l) 
VH. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Accuracy statistics of fraction estimations using different feature combinations, including mono-date Spectral (mono-S), Radar Time-series (RT), Spectral Time series 
(ST), Spectral and Radar Time series (SRT), and FDA-transformed SRT (FDA-SRT) features. The accuracy values were calculated from the average of 9 independent 
within-site runs (3-fold evaluation per site). The overall results were calculated from the accuracy of all land covers per column.  

Land cover RMSE r2 

mono-S RT ST SRT FDA-SRT mono-S RT ST SRT FDA-SRT 

DBT 0.265 0.192 0.183 0.173 0.128 0.517 0.694 0.717 0.739 0.826 
DNT 0.219 0.199 0.185 0.178 0.163 0.545 0.427 0.501 0.559 0.641 
ENT 0.178 0.235 0.161 0.161 0.153 0.642 0.577 0.736 0.736 0.766 
nonF 0.227 0.213 0.189 0.193 0.154 0.494 0.608 0.641 0.685 0.783 

Overall 0.222 0.210 0.180 0.176 0.150 0.550 0.576 0.649 0.680 0.754  
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0.649 to 0.680, and the decrease in RMSE from 0.180 to 0.176. The 
addition of radar information proved its particular benefits for DBT and 
DNT (RMSE decreased from 0.183 to 0.173, and 0.185 to 0.178), but 
with an exception for ENT (RMSE remained consistent at 0.161). In 
contrast to TFT fractional cover, the mapping accuracy of nonF cover 
decreased with the integration of spectral and radar features (RMSE =
0.189 vs. 0.193 for ST and SRT features; Table 2). This suggests that the 
constructed SRT endmember library was not robust against the signifi
cantly high within-nonF variability. 

3.3. Evaluating the effectiveness of FDA features 

To evaluate the effectiveness of FDA in optimizing the endmember 
variability between different TFTs, we compared the dimensional 
reduction of SRT features based on FDA with PCA (Fig. 3). Our findings 
revealed a significant decrease in the similarity among different end
members when using FDA, as compared to PCA, suggesting that FDA 
features offer improved representativeness (Fig. 3a and c). Specifically, 
when comparing the first four features of PCA and FDA results (Fig. 3b 
vs. d), we found that PCA features of the nonF type exhibited the much 
higher within-class variability compared to TFTs and its endmember 
candidates have significant overlap regions with all three TFTs. In 
contrast, FDA features of the nonF type displayed less within-class 
variability and a larger distance to TFTs. Additionally, ENT and DNT 
were highly similar in the PCA features but distinct in the FDA features 
(Fig. 3b and d). This optimization for within- and between-class vari
ability explains the accuracy increment in models using FDA-SRT fea
tures compared with SRT features in the within-site experiments (RMSE 
= 0.150 vs. 0.176 and r2 = 0.754 vs. 0.680; Table 2). Notably, the nonF 
type experienced the most significant decrease in with-class variability, 
resulting in the highest increase in r2 of 0.098, followed by DBT with an 

increase of 0.087, DNT with an increase of 0.082, and ENT with a 
marginal increase of 0.030(Table 2). 

Overall, the FDA analysis reduced the original feature dimensions to 
a much smaller dimension (n = 180 vs. 4), resulting in improved frac
tional mapping accuracy and computational efficiency. Notably, our 
results demonstrate that the FDA features, characterized by reduced 
within-class variability, enabled the model to achieve high accuracy 
using only one endmember for each land cover type. In contrast, non- 
FDA models typically require a more extensive endmember library to 
represent the considerable variability across diverse landscapes 
(Fig. S3). This highlights the efficiency and effectiveness of the FDA 
approach in reducing the complexity of endmember selection while 
maintaining high unmixing accuracy. It is equally important to note that 
some minor variation in the FDA model’s performance occurs as the 
number of sub-endmembers increases. This variation in the FDA model 
is likely associated with the adverse effects of high collinearity between 
the sub-endmembers due to the reduction of within-class variability 
(Chen et al., 2011; Sabol et al., 1992). Therefore, the collinearity issue 
should be considered when implementing FDA analysis in future studies 
with similar objectives. 

3.4. Evaluating the cross-site model generalizability 

We aimed to investigate whether the utilization of different feature 
scenarios could improve the representation of cross-site endmembers, 
thereby improving model generalizability (Table 2 vs. Table 3). In ST 
feature scenario, we observed a significant reduction of overall accuracy 
for cross-site models compared to the within-site models (r2 = 0.570 
vs.0.649, RMSE = 0.222 vs.0.180). This indicates that models using ST 
features lack generalizability when applied to large landscapes. In the 
cross-site scenario, ST features can adequately simulate DBT and ENT to 

Fig. 3. Reduced within-class variability and increased between-class variability of SRT endmembers after Fisher discriminant analysis (FDA). The figure includes 3D 
scatter plots and dimensionally reduced feature patterns of endmember candidates based on PCA and FDA respectively. Panels (a) and (b) depict the endmember 
candidates in the PCA feature space, while panels (c) and (d) show the endmember candidates in the FDA feature space. The stars in the 3D scatter plots represent the 
K-means clustering centers corresponding to different land types, and the distance between cluster centers infers the between-class variability. In the lower panels, 
error bars present the standard deviation of endmember candidates for both PCA features and FDA features, indicating within-class variability for the non-FDA and 
FDA-based endmembers. 
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some extent (r2 = 0.647 and 0.724, RMSE = 0.210 and 0.185) but poorly 
represent the DNT(r2 = 0.389, RMSE = 0.263). Moreover, the class-wise 
accuracy is unstable (overall standard deviation of r2 = 0.184). In this 
regard, the addition of radar time-series data (i.e., SRT features) is of 
utmost importance due to its impact on enhancing both cross-site ac
curacy for DNT (r2 = 0.556, RMSE = 0.195) and the stability of class- 
wise performance (overall standard deviation of r2 = 0.112). 

We next explored the potential benefits of incorporating FDA to 
mitigate the adverse effects in increased within-class variability in 
space-time features caused by large landscapes, and thus increase the 
cross-site model generalizability (Figs. 4 and 5). The SRT endmembers 
exhibited low cross-site generalizability, indicated by lower accuracy 
and larger model uncertainties compared to the within-site evaluations 
for all land types (as depicted by the error bars in Fig. 4). The use of FDA- 
SRT endmembers resolved this deficiency and yielded consistently high 
accuracy under both local and non-local scenarios, and the overall ac
curacy for both within- and cross-site evaluations was more comparable 
(r2 = 0.754 vs. 0.715, RMSE =0.164 vs. 0.150; Table 2 vs. Table 3). We 
observed that the combination with FDA analysis could lead to a sub
stantially improved accuracy and model stability, especially for nonF 
type (r2 = 0.598 ± 0.103 vs. 0.742 ± 0.072 for SRT and FDA-SRT 
features). 

Regarding model bias, as shown by the fitting red line in Fig. 6, the 
non-FDA model tends to overestimate DBT and DNT where they are less 
abundant (fraction<0.4 for SRTMA and fraction<0.3 for F-SRTMA) 
while underestimating the fractions where they are dominant. Similarly, 
for ENT and nonF, the models tend to underestimate their fractions 
across the fraction gradient. Nevertheless, the scatter plots show a sig
nificant decrease in bias when incorporating FDA into the SRTMA 
model. 

3.5. Ecoregion-wise mapping and cross-comparison with discrete non- 
forest products 

To demonstrate the effectiveness of the F-SRTMA approach for 
mapping forest/non-forest fractions across large and diverse landscapes, 
we conducted a cross-comparison of the nonF fractions on a 90 m patch 
level derived using the F-SRTMA approach with two nonF classification 
products (WC and GCH). The comparison revealed a strong correlation 
between the fraction maps derived from F-SRTMA and those from the 
other two products across the ecoregion (0.740 for WC and 0.759 for 
GCH). However, upon closer examination of the spatial patterns, we 
found that the two discrete maps tended to underestimate non-forested 
extents compared to our nonF fraction map, especially in areas where 
the physical sizes of ground objects (i.e., roads, streams, canopy gaps) 
are smaller than those of satellite image pixels (Fig. 8). In contrast, our 
proposed F-SRTMA approach was able to accurately capture these fine- 
scale land cover types, providing more precise sub-pixel level 
information. 

4. Discussion 

Mapping TFT fractions at a large scale is critical to understanding the 
composition and functional response of temperate mixed forests to 
changing climates. However, it remains challenging for satellite-based 
approaches to achieve high accuracy and cross-site generalizability. In 
our study, we proposed the F-SRTMA framework, which addresses these 
challenges with two novel aspects: (1) higher accuracy of TFT fractional 
mapping achieved by assimilating more feature dimensions (i.e., spec
tral, radar and temporal; SRT) compared to the conventional SMA and 
STMA methods that rely on the spectral features only, and (2) improved 
cross-site model generalizability achieved by further integrating FDA 

Table 3 
Evaluation of cross-site endmember generalizability under different feature combination scenarios, including FDA-transformed Spectral Time series (FDA-ST), and 
FDA-transformed Spectral and Radar Time series (FDA-SRT) features. The average accuracy and corresponding standard deviation are reported for each land cover 
category, with 6 cross-site models (2 runs for each site) considered. The evaluations were performed on a 90 m patch scale.   

RMSE r2 

ST SRT FDA-ST FDA-SRT ST SRT FDA-ST FDA-SRT 

DBT 0.210 ± 0.019 0.210 ± 0.023 0.127 ± 0.017 0.123 ± 0.017 0.647 ± 0.108 0.667 ± 0.106 0.805 ± 0.053 0.817 ± 0.048 
DNT 0.263 ± 0.077 0.195 ± 0.034 0.274 ± 0.051 0.201 ± 0.027 0.389 ± 0.201 0.556 ± 0.123 0.467 ± 0.082 0.536 ± 0.082 
ENT 0.185 ± 0.039 0.190 ± 0.042 0.168 ± 0.046 0.171 ± 0.039 0.724 ± 0.059 0.715 ± 0.055 0.762 ± 0.080 0.765 ± 0.075 
nonF 0.231 ± 0.054 0.235 ± 0.044 0.162 ± 0.022 0.163 ± 0.018 0.518 ± 0.145 0.598 ± 0.103 0.697 ± 0.134 0.742 ± 0.072 

Overall 0.222 ± 0.056 0.207 ± 0.039 0.183 ± 0.066 0.164 ± 0.038 0.570 ± 0.184 0.634 ± 0.112 0.683 ± 0.158 0.715 ± 0.127  

Fig. 4. Comparison of model performance in terms of both (a) r2 and (b) RMSE using local (within-site) and non-local (cross-site) endmembers based on SRT and 
FDA-SRT features. For the within-site case, error bars indicate the standard deviation of accuracy across three sites. In the cross-site case, error bars display the 
average and uncertainties derived from 9 within-site models (three runs per site) and 6 cross-site models (two runs per site). 
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with SRT features. 

4.1. Effectiveness of the F-SRTMA framework in advancing the TFT 
fractional mapping 

Distinct and representative features are critical for accurate spectral 
unmixing analysis and thus TFT fractional mapping. We found that the 
combined use of time-series spectral reflectance and radar signatures 

could be a way to improve unmixing accuracy. First, the inclusion of 
time-series spectral information provided a more comprehensive rep
resentation of TFT ecological characteristics and dynamics, such as 
seasonal variations in leaf color, biochemistry, and quantity (Wu et al., 
2018; Wu et al., 2021; Yang et al., 2014). In contrast, limited spectral 
information inherent in mono-date multi-spectral imagery (Wang et al., 
2021) typically leads to the “spectral mimicking” issue, where different 
TFTs may sometimes display similar spectra (Adams and Gillespie, 

Fig. 5. Fraction maps showcasing cross-site endmember generalizability. The independent site was mapped using non-local endmembers with spectral-radar time- 
series (SRT) and FDA-SRT features, respectively. Sentinel-2 autumn RGB images are provided for reference. Ground truth fraction maps were derived from 1 m 
airborne TFT classification. Estimated class fraction scaled from [0,1] with red, green, blue and black corresponding to the DBT, ENT, DNT, and non-F type, 
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2006; Sousa and Davis, 2020). Thus, compared to mono-date spectral 
mixture analysis models, time-series spectral information increased the 
separability among different TFTs and yielded superior TFT fractional 
mapping results (Table 2). 

Second, our study demonstrated that time-series radar information 
further enhanced the separability among TFTs and other vegetations, 
particularly for those with considerable differences in canopy structure 
(e.g., DNT vs. DBT, tree vs. grass; Fig. 2k and l) (Sousa and Davis, 2020). 
Specifically, we observed that the endmember candidates of the nonF 
type exhibited significant spectral band overlap with DNT but were 
more distinguishable in the VV and VH bands (Fig. 2). Thus, the RT 
features significantly enhanced their differentiation and resolved the 
“spectral mimicking” effects between nonF and TFTs and yielded higher 
accuracy (Table 2). We also noticed that the RT features is only a 
complement to the ST features. For example, the DBT displayed a 
distinct temporal pattern in the ST features (especially in red-edge to 
near infrared bands), consequently, incorporating the RT features did 
not show significant complement to its differentiation. In contrast, EBTs 
and ENTs can present a similar “spectral mimicking” in ST features, 
particularly in lower latitude regions where EBTs and ENTs coexist with 
higher tree species diversity. While we did not examine EBTs within the 
model, in this case, the differences in canopy structure of broadleaf and 
needleleaf trees inferred from SAR data, could potentially help differ
entiate between coexisting broadleaf and conifer trees (i.e., EBT vs. ENT; 
DBT vs. DNT). Therefore, a comprehensive evaluation of the broader- 
scale applicability of our proposed method, as well as the identifica
tion of necessary adjustments for enhancing scalability, remains essen
tial in future endeavors. 

Notably, our study examined SAR time-series signals for unmixing 
models for the first time. The clear physical meaning of backscatter 
signals aligns with the principles of time-series spectral mixture (Arii 
et al., 2019), enabling the use of SAR data to model the fractional 
mixture of volume scattering dynamics within tree canopies (Waser 
et al., 2021). For instance, backscatter signals from broadleaved trees 
exhibited higher values in both polarizations during the leaf-off period 
compared to the leaf-on period (Reiche et al., 2018; Tanase et al., 2019), 
which is useful in distinguishing tall trees from low vegetation such as 
shrubs and grass. However, we also observed that assimilating RT data 
in a linear mixture model also introduce uncertainty, as the 

improvement of SRT over ST features is marginal or even negative for 
some TFTs (Table 2). This can be attributed to the inherent multi- 
scattering processes in SAR data and its significantly stronger 
nonlinear mixture relationship, which deviates from the linear 
assumption in linear mixture models. Taking this drawback into ac
count, our model only utilized SAR data as a complementary source to 
the optical information and used FDA to further mitigate the limitations 
posed by multi-scattering effects. 

To further assess the impact of multi-scattering effects on linear 
mixture models, we mapped the residuals of the linear mixture model 
with radar time-series (RT) features (Fig. S5). In most of the forest re
gions, the residuals are relatively small, indicating that the multi- 
scattering effects in forest regions are not significant (Fig. S5a). This 
could because the weaker penetration capability of C-band (5.547 cm) is 
dominantly responsive to the volume scattering from canopy while the 
trunks and ground scattering can be negligible, as demonstrated in 
several previous studies (Freeman and Durden, 1998; Schmullius and 
Evans, 1997). We showcased three examples of high residual regions for 
RTMA model in Fig. S5. Example 1 shows that model failed to capture 
the ground-trunk scattering at forest boundary; example 2 shows the 
surface scattering from the wetland; and example 3 shows the canopy 
(volume) scattering from the dense needle evergreen trees). Despite 
these high residuals, the RTMA-based fraction map demonstrates strong 
spatial consistency with the ground truth map (Figs. S5c and S5d), 
indicating that these residuals do not significantly impact the estimated 
TFT fractions. This result thus offers valuable insights into the effec
tiveness of radar time-series for differentiating between different various 
tree types, which could potentially enhance the accuracy of TFT frac
tional mapping. 

4.2. Enhanced model generalizability for broader-scale TFT fractional 
mapping 

The lack of generalizability can limit the usefulness of the model for 
large-scale mapping applications, where accurate and consistent results 
across different areas and time are critical. To address this issue, we 
integrated FDA with SRT features to improve the representativeness of 
the TFT endmember library across complex vegetation landscapes 
(Fig. 7a vs. Fig. S7). The inclusion of higher feature dimensions often 

Fig. 6. Scatter plots for cross-site tests based on SRTMA and F-SRTMA models. The upper panels display the results of the SRTMA model, while the lower panels show 
the results of the F-SRTMA model. The scatters represent the estimates from all cross-site models, where for each model we randomly sampled 100 fraction estimates 
within each 0.1 interval. 
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comes with a cost, as it will bring certain features that show high 
sensitivity to ambient conditions (e.g., residual cloud/aerosol contami
nation, snow effect, topography effect) and results in a much lower 
signal-to-noise ratio (Gómez et al., 2016; Zhang et al., 2019). For 
example, the low accuracy of nonF type is likely due to the high within- 
class variability associated with diverse land materials and ambience 
noises across space and time, which is difficult to capture with the 
constructed endmember library. This high variability is evident in the 
PCA space of pure pixels, which shows that nonF has significantly larger 
within-class variability compared to other land classes of interest 
(Fig. 3a and b). The use of FDA tended to help suppress the impact 
associated with these ambient noises through feature dimension 
reduction, leading to improved TFT fractional mapping, especially for 
those TFTs with rare-to-subdominant abundance (i.e., DNT and nonF; 
Figs. 3–5). 

Despite this effectiveness of FDA in handling signal variability of 
endmembers from diverse and heterogeneous landscapes, the selection 
of endmembers from representative locations is also critical as it leaded 
to marked accuracy difference between sites and TFTs (Fig. S6). Spe
cifically, DBT that often presents at mountainous regions and its signals 
are affected by local topographic conditions, thus endmembers extrac
ted from the CHEQ site exhibit lower representativeness to the other two 
sites (RMSE = 0.19 and 0.20 against 0.15). For the DNT, because it is 
strongly influenced by the background signal from diverse wetland 
habitats (water and moist soil) (Benninga et al., 2019), the DNT end
members extracted from wetland site UNDE thus being less represen
tative to the other two sites with lowest accuracy among TFTs (RMSE =
0.19 and 0.24 against 0.14). These results underscore the importance of 
explicitly accounting for environmental heterogeneity in the selection to 
improve the scalability of the model across larger and diverse 
landscapes. 

Our validation approach differs from most previous unmixing studies 
in terms of both the benchmark data used (i.e., fraction maps across 
divergent landscapes) and the validation strategy employed (i.e., inde
pendent K-fold evaluation). Previous studies commonly used fraction 
validation datasets that only cover a small fraction of research regions, 

such as phenology camera (PhenoCam) imagery (Sousa and Davis, 
2020) or manual interpretation/field survey plots (Bolyn et al., 2022; 
Nill et al., 2022; Okujeni et al., 2021), given the difficulty to generate 
finer-scale benchmark dataset covering large landscapes. Our bench
mark data, which covers 392 km2 and spans a distance of 100 km be
tween sites, is crucial for evaluating the generalizability of the model 
across landscapes with diverse TFT compositions and high spatial het
erogeneity. This provides an improved assessment of the model’s pre
dictive capabilities under different scenarios. Additionally, the 
independent K-fold accuracy assessment is vital for the non-biased 
validation of fraction estimations, but it was rarely used among the 
previous TFT fraction validation exercises. In this regard, our study 
provides a more rigorous and comparable accuracy assessment of our 
proposed F-SRTMA framework. 

Our F-SRTMA framework embeds three independent and easy-to- 
implement modules (i.e., SRT feature reconstruction, spatial-guided 
endmember extraction, and FDA features) into the SMA framework, 
which implies that our modeling framework can be largely adapted to 
other novel endmember extraction/unmixing algorithms or future 
advanced remote sensing datasets. Specifically, our locally extracted 
endmembers with time-series features are tractable for any location or 
multi-year estimations. This is because the reconstructed SRT features in 
monthly format can counteract the influence of various observational 
dates across large landscapes and different years, in contrast to other 
time-series mixture analysis models that only use good-quality satellite 
imagery with varying acquisition dates across landscapes or years 
(Hemmerling et al., 2021; Okujeni et al., 2021; Wang et al., 2021). 
Moreover, the whole framework was developed on GEE, making it easy 
to be extended to other remote sensing datasets or locations. 

4.3. Ecological implications 

The derived fractional TFT compositions provide an important 
dataset for interpreting the processes underlying the regulation of 
ecosystem multi-functionality in this ecoregion. Previous studies have 
shown that the magnitude and directional change of understory 

Fig. 7. Spatial and vertical distribution of TFT in the northern upland ecoregion. (a) Estimated fractions of DBT, ENT, and DNT, respectively. (c, d) Tree growing 
niches along the slope and elevation gradients. Dashed lines represent the median value of each corresponding TFT distribution. 
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vegetation composition and density with climate change are largely 
mediated by the upper canopies of broadleaved vs. conifer TFTs due to 
their distinct canopy structures (Cook, 2015; Sonnier et al., 2020; 
Wiegmann and Waller, 2006). In addition, due to the fundamental dif
ferences in plant phenological and physiological characteristics among 
different TFTs, fractional TFT compositions improve understanding and 
modeling of their impacts on ecosystem phenology (Smith and Keenan, 
2020), light/water use efficiency (Ahl et al., 2004; Murphy et al., 2022), 
as well as water/carbon flux seasonality (Krasnova et al., 2019; Mackay 
et al., 2002). Since these studies were mainly based on site/plot-level 
datasets, our ecoregion-wise TFT fraction map provides a way to scale 
up this site-level knowledge. 

Furthermore, the generated dataset provides a unique opportunity to 
understand the overall picture of multifaceted TFT assemblages in the 
upland mixed forest ecoregion and to reveal proximate environmental 
drivers underlying the observed patterns (Fig. 7). Generally, DBT was 
found to be the dominant TFT in this ecoregion, while DNT was found to 
be the most fragmented across the entire ecoregion (NatureServe, 2009). 
The fractional TFT distribution along elevational gradients supports the 
topographic niche hypothesis that has often been hypothesized for 
explaining the biogeography of TFT distributions (Fig. 7b and c; Bai 
et al., 2015). The shared and separated elevational niches among 
different TFTs indicate that DNT (mostly fir (Abies spp.) and tamarack 
(Larix spp.)) are well mixed with the ENT (typically including pine 
(Pinus spp.) and spruce (Picea spp.)) in lowland floodplains (i.e., by 
lakes or wetlands), while DBT becomes dominant in elevated and 
steeper regions (Fig. 7b). Notably, our estimates of the area-based dis
tribution of TFTs are closely related to local species-level observations 
that DNT mainly grows in warmer and wetter areas while DBT can 
survive in colder and drier environments (Mamet et al., 2019; Neves 
et al., 2021; Waller et al., 2013). The results reinforce the finding that 
the TFT mixture is notably evident in temperate regions, where TFT 
fractions often exhibit significant variations across environmental gra
dients. These variations can be attributed to a range of factors, including 

climatic and topographic conditions, as well as intricate complex in
teractions between vegetation, climate, topography, and disturbance 
histories (Echeverría-Londoño et al., 2018; Hansen et al., 2013; Swenson 
et al., 2012). 

Our results demonstrate that subpixel-level fractions are more effi
cient than discrete classes for characterizing forest density and volume. 
They show a higher accuracy with airborne LiDAR-based canopy height 
results than the other two state-of-the-art forested products (Fig. 8). 
Forest fractions, including fractions of forest gaps and forest edges, can 
be used to infer the density/volume of the forest fragmentation level, an 
essential metric for studying forest multi-functionality, such as carbon 
cycling (Krasnova et al., 2019; Moore et al., 2016), forest mortality 
(Barton et al., 2017), drought and other stress responses (Gleason et al., 
2017). However, this relevant information was not well depicted for the 
temperate mixed forest ecosystem because the size of canopy gaps 
among the sparse stands is often smaller than the area of a satellite 
image pixel, as shown in the examples in Fig. 8. The F-SRTMA frame
work for subpixel abundance mapping is thus advantageous for char
acterizing such fragmented forest compositions in both mixed and open- 
canopy forest ecosystems. 

4.4. Limitation and future perspective 

Our study has three main limitations, and further efforts could 
enhance TFT fractional mapping. First, relying on land cover data to 
determine TFT endmember types (step 2 in Section 2.3.2) may limit the 
approach’s applicability in areas where land cover reference is unavai
lable. Furthermore, the accuracy of existing land cover maps may not 
always be sufficient for determining endmember types. The spatial- 
spectral-based refinement method, such as MEI used in this study, 
may only select one dominant type of pure pixel per kernel neighbor
hood, potentially leading to the loss of important endmembers in certain 
situations, especially the land type with small coverage (i.e., TFT with 
rare abundance). Thus, instead of relying solely on specific reference 

Fig. 8. Comparison of fraction and discrete classification maps in characterizing fragmented non-forest land cover. (a, b) Two state-of-the-art discrete non-forest 
maps. (c) F-SRTMA-based non-forest fraction map. Estimated fractions scaled from [0, 1], with white and black corresponding to 100% of the non-forest and for
est classes, respectively. 
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maps, we suggest determining land cover automatically using empirical 
constraints, such as vegetation index-based thresholds (Wang et al., 
2023), or doing it manually through visual interpretation (Nill et al., 
2022; Ouyang et al., 2022; Schug et al., 2020). As more high-spatial 
resolution reference datasets are becoming available across continents, 
such as the IDtrees NIST NEON submeter airborne classification map 
(Weinstein et al., 2019), or forest in-situ survey datasets such as LUCAS 
(D’Andrimont et al., 2020) and SiDroForest (van Geffen et al., 2022), we 
anticipate that these restrictions can be alleviated in the future. 

Second, the shallow penetration depth (around 5 cm) of Sentinel-1C- 
band data limits its sensitivity to tree structure detection (Ling et al., 
2022), as we observed significant overlap between the conifers (ENT and 
DNT) endmembers of VV and VH bands (Fig. 2k and l). To address this 
issue, future studies are suggested to use longer wavelength bands of 
SAR data, such as L-band (with a wavelength of 15–30 cm) and P-band 
(with a wavelength of 30-100 cm). These longer wavelength bands offer 
a significantly enhanced ability to penetrate deeper into forest canopies 
and provide multi-layer structural information (Carreiras et al., 2017; 
Englhart et al., 2011). Ultimately, this could increase the signal-to-noise 
ratio of the extracted forest structure information (Li et al., 2019). Ex
amples of suitable SAR data for this purpose include PALSAR (Rose
nqvist et al., 2007) and BIOMASS(Sedehi et al., 2021). 

Third, our proposed F-SRTMA framework exhibits high scalability 
and is designed for integration with various data sources or algorithms 
in the future. Although our study employed the F-SRTMA framework 
based on Sentinel − 1 and − 2 imagery, it can be extended and scaled to 
accommodate different sensors, such as ALOS PALSAR, Landsat, and 
EnMAP (Brell et al., 2021; Rosenqvist et al., 2007). In this study, we 
utilized MESMA, an advanced model that only considers only linear 
mixture mechanisms. However, it is essential to acknowledge the pres
ence of nonlinear multi-scattering effects in SAR data introduces sig
nificant uncertainty when using a linear mixture model, such as the one 
employed in our study, to assimilate RT features for TFT fraction map
ping. This highlights the need for the development of more sophisticated 
models that can accurately represent this nonlinearity in future research. 
The open structure of the F-SRTMA framework enables the use of other 
state-of-the-art unmixing algorithms to model both linear and non-linear 
mixtures, such as machine learning regression-based unmixing models 
(Okujeni et al., 2017; Senf et al., 2020) and spectral-spatial deep 
learning models (Bolyn et al., 2022). 

5. Conclusion 

Fractional tree functional type (TFT) composition is an important 
metric that is tightly related to the multi-functionality of temperate 
mixed forest ecosystems. In this study, we developed an F-SRTMA 
framework to enhance TFT fraction mapping using time-series Sentinel 
− 1 and − 2 data, aiming to advance the characterization of high spatial 
TFT heterogeneity in temperate mixed forest ecotones. The framework 
includes four steps: reconstructing standardized SRT features based on 
time-series Sentinel-1 and -2 imagery (step 1), identifying candidate 
endmembers using a spatial-guided endmember selection method (step 
2), optimizing the endmember space-time variability with FDA (step 3), 
and estimating the endmember abundances per pixel from a MESMA 
model (step 4). Our proposed F-SRTMA approach was rigorously eval
uated and exhibited higher accuracy (RMSE = 0.150, r2 = 0.754) 
compared to recent advanced STMA (RMSE = 0.180, r2 = 0.649) and 
conventional SMA (RMSE = 0.222, r2 = 0.550). Moreover, the inclusion 
of radar time-series improved generalizability across sites (RMSE =
0.222 vs. 0.207 for STMA and SRTMA), and the integration of FDA (F- 
SRTMA) achieved more consistent and significantly higher cross-site 
accuracy (RMSE = 0.164). Our work demonstrates the advantages of 
integrating spectral and radar time-series signals for improved unmixing 
modeling, which holds significant theoretical implications. Addition
ally, our proposed F-SRTMA framework provides an effective way to 
utilize spectral and radar time series for TFT fractional mapping, 

offering new avenues for refining the fusion of spectral and radar 
information. 

The framework, built on the GEE platform, facilitates the detection of 
fractional TFT composition variations across diverse landscapes on an 
ecoregion level, providing an essential dataset to support subsequent, 
more complex ecological studies of this system. We contend that our 
framework could be equally suitable for mapping other important 
metrics, such as urban and vegetation fractions, and could be scaled for 
different time-series spectral and radar remote sensing datasets and in
tegrated with various unmixing algorithms. 
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exchange in a hemiboreal mixed forest in relation to tree species composition. Agric. 
For. Meteorol. 275, 11–23. https://doi.org/10.1016/j.agrformet.2019.05.007. 

Li, X., Liu, Y., Xu, W., Huang, P., Fu, W., 2019. Forest canopy volume density index 
inversion method using polarization decomposition. In: Presented at the 2019 
Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall). IEEE. 
https://doi.org/10.1109/piers-fall48861.2019.9021425. 

Ling, Y., Teng, S., Liu, C., Dash, J., Morris, H., Pastor-Guzman, J., 2022. Assessing the 
accuracy of Forest Phenological extraction from Sentinel-1 C-band backscatter 
measurements in deciduous and coniferous forests. Remote Sens. 14, 674. https:// 
doi.org/10.3390/rs14030674. 

Liu, M., Yang, W., Chen, J., Chen, X., 2017. An orthogonal Fisher transformation-based 
Unmixing method toward estimating fractional vegetation cover in semiarid areas. 
IEEE Geosci. Remote Sens. Lett. 14, 449–453. https://doi.org/10.1109/ 
lgrs.2017.2648863. 

Mackay, D.S., Ahl, D.E., Ewers, B.E., Gower, S.T., Burrows, S.N., Samanta, S., Davis, K.J., 
2002. Effects of aggregated classifications of forest composition on estimates of 
evapotranspiration in a northern Wisconsin forest. Glob. Chang. Biol. 8, 1253–1265. 
https://doi.org/10.1046/j.1365-2486.2002.00554.x. 

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., 
Berger, M., 2012. Sentinels for science: potential of Sentinel-1, − 2, and − 3 missions 
for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 
Sentin. Missions New Opportunities Sci. 120, 91–101. https://doi.org/10.1016/j. 
rse.2011.09.026. 

Mamet, S.D., Brown, C.D., Trant, A.J., Laroque, C.P., 2019. Shifting 
globalLarixdistributions: northern expansion and southern retraction as species 
respond to changing climate. J. Biogeogr. 46, 30–44. https://doi.org/10.1111/ 
jbi.13465. 

McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the 
delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. https://doi. 
org/10.1080/01431169608948714. 

Mei, S., He, M., Wang, Z., Feng, D., 2010. Spatial purity based endmember extraction for 
spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 48, 3434–3445. https:// 
doi.org/10.1109/tgrs.2010.2046671. 

Mendes, F., Baron, D., Gerold, G., Liesenberg, V., Erasmi, S., 2019. Optical and SAR 
remote sensing synergism for mapping vegetation types in the endangered Cerrado/ 
Amazon ecotone of Nova Mutum—Mato Grosso. Remote Sens. 11, 1161. https://doi. 
org/10.3390/rs11101161. 

Moore, C.E., Beringer, J., Evans, B., Hutley, L.B., Mchugh, I., Tapper, N.J., 2016. The 
contribution of trees and grasses to productivity of an Australian tropical savanna. 
Biogeosciences 13, 2387–2403. https://doi.org/10.5194/bg-13-2387-2016. 

Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., 
Reiche, J., 2021. Sentinel-1 SAR backscatter analysis ready data preparation in 
Google earth engine. Remote Sens. 13, 1954. https://doi.org/10.3390/rs13101954. 

Murphy, B.A., May, J.A., Butterworth, B.J., Andresen, C.G., Desai, A.R., 2022. 
Unraveling Forest complexity: resource use efficiency, disturbance, and the 
structure-function relationship. J. Geophys. Res. Biogeosci. 127, e2021JG006748 
https://doi.org/10.1029/2021JG006748. 

NatureServe, 2009. NatureServe Explorer: An online encyclopedia of life [web 
application]. Version 7.1. NatureServe Arlington, Virginia.  

Neves, D.M., Kerkhoff, A.J., Echeverría-Londoño, S., Merow, C., Morueta-Holme, N., 
Peet, R.K., Sandel, B., Svenning, J.-C., Wiser, S.K., Enquist, B.J., 2021. The adaptive 
challenge of extreme conditions shapes evolutionary diversity of plant assemblages 
at continental scales. Proc. Natl. Acad. Sci. USA 118, e2021132118. https://doi.org/ 
10.1073/pnas.2021132118. 

Nill, L., Grünberg, I., Ullmann, T., 2022. Arctic shrub expansion revealed by Landsat- 
derived multitemporal vegetation cover fractions in the Western Canadian Arctic. 
Remote Sens. Environ. 281, 113228 https://doi.org/10.1016/j.rse.2022.113228. 

Okada, T., Tomita, S., 1985. An optimal orthonormal system for discriminant analysis. 
Pattern Recogn. 18, 139–144. https://doi.org/10.1016/0031-3203(85)90037-8. 

Okujeni, A., van der Linden, S., Suess, S., Hostert, P., 2017. Ensemble learning from 
synthetically mixed training data for quantifying urban land cover with support 
vector regression. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 10, 
1640–1650. https://doi.org/10.1109/JSTARS.2016.2634859. 

Okujeni, A., Jänicke, C., Cooper, S., Frantz, D., Hostert, P., Clark, M., Segl, K., van der 
Linden, S., 2021. Multi-season unmixing of vegetation class fractions across diverse 
Californian ecoregions using simulated spaceborne imaging spectroscopy data. 
Remote Sens. Environ. 264, 112558 https://doi.org/10.1016/j.rse.2021.112558. 

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. 
Syst. Man Cybern. 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076. 

Ouyang, L., Wu, C., Li, J., Liu, Y., Wang, M., Han, J., Song, C., Yu, Q., Haase, D., 2022. 
Mapping impervious surface using phenology-integrated and fisher transformed 
linear spectral mixture analysis. Remote Sens. https://doi.org/10.3390/rs14071673. 

Parida, B.R., Mandal, S.P., 2020. Polarimetric decomposition methods for LULC mapping 
using ALOS L-band PolSAR data in Western parts of Mizoram, Northeast India. SN 
Appl. Sci. 2 https://doi.org/10.1007/s42452-020-2866-1. 

Plaza, A., Martinez, P., Perez, R., Plaza, J., 2002. Spatial/spectral endmember extraction 
by multidimensional morphological operations. IEEE Trans. Geosci. Remote Sens. 
40, 2025–2041. https://doi.org/10.1109/tgrs.2002.802494. 

Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., 
Pickens, A., Turubanova, S., Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J. 
B., Hofton, M., 2021. Mapping global forest canopy height through integration of 
GEDI and Landsat data. Remote Sens. Environ. 253, 112165 https://doi.org/ 
10.1016/j.rse.2020.112165. 

Poulter, B., Macbean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., 
Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., 
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