

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

1. Introduction

- Global SO₂ emissions: decreased by 31% between 1990-2015
- East Asia SO₂ emissions : increased by 70% in 1990-2005 and continued decreasing thereafter

1.2 Indian anthropogenic emissions

- India became the 1st SO₂ emitter after 2015
- India heavily relies on the coal-based thermal power plants to meet the growing energy demands -> large amount of SO_2 emissions
- Fast-paced changes in economy and environmental regulations will lead to unforeseen emission changes in India-> requires of timely and accurate SO₂ emissions

1.3 Flux-divergence method

observations over India using

Yutao Chen^{1,2}, Ronald J. van der A¹, Jieying Ding¹, Henk Eske Tsikerdekis¹, Pieternel

¹ Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands ² Department of Geoscience & Remote Sensing, Delft University of Technology (TUD), Delft $\overline{\underline{2}}$

2. Methodology

2.1 SO₂ Lifetime in India

• V_{so_2} : SO₂ satellite observations from TROPOMI SO₂ Level-2 COBRA dataset (from December 2018 to November 2023)

• τ : SO₂ effective lifetime; τ_c : SO₂ chemical lifetime; τ_d : SO₂ dry deposition lifetime

[OH]: OH climatology derived from the CAMS atmospheric composition forecast data; k: chemical constant rate

• 0.4: dry deposition velocity derived from the field measurements (unit: cm s⁻¹)

2.2 Improve the Classic Divergence Method (CDM)

• CDM: $D_{x(i)} = \frac{\vec{F}_{x(i+1)} - \vec{F}_{x(i-1)}}{2\Delta x}$

- \circ where $D_{x(i)}$ represents the divergence in the center of grid cell *i* calculated from x direction. $\vec{F}_{x(i)}$ denotes the SO₂ flux in the center of grid cell *i* along *x* direction
- \circ The divergence in the center of grid cell *i* is equal to the linear interpolation of the divergence at the edges of the grid cell /
- New method: Allocate all of the edge divergence to the grid cell with the larger SO_2 VCD.

10°N

20°N

- The total point source emissions in India are estimated to be 2.8 Tg year¹ in 2019 and 3.0 Tg year¹ in 2023.
- The emissions of Vindhyachal, the point source showing the largest decrease, were reduced by 17%, which is about 43 Gg year¹
- The largest increasing emitter, Baradarha, increased over 75%, which is in total 107 Gg year¹ of SO_2 emissions.

TUDelft

Corresponding author: Yutao Chen (yutao.chen@knmi.nl)

