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Abstract

During the last decades, scientific research in the

field of flood risk management has provided new

insights and strong computational tools towards

the deeper understanding of the fundamental

stochastic behaviour that characterizes such

natural hazards. Flood hazards are controlled by

hydrometeorological processes and their

inherent uncertainties.

Historically, a high percentage of flood disasters

worldwide are investigated regarding the

aggregated number of the affected people,

economic losses, and generated flood insurance

claims.

In this respect, the recently published National

Flood Insurance Program data by the Federal

Emergency Management Agency may yield

novel perspectives into flood impacts.

The objective of this study is to conduct a spatial

analysis on the daily flow series within the US-

CAMELS dataset.

Specifically, we seek to identify spatial clustering

mechanisms of over-threshold streamflow

extremes, considering them as proxies for

collective risk, in order to examine their

underlying stochastic structure.

Furthermore, we explore their relevance to the

actual insurance data and develop some

additional stochastic modelling approaches.



Fig. 1 The 671 US-CAMELS stream gauge locations. The selected 360 US-CAMELS 

stream gauge locations are colored orange.

US-CAMELS 

dataset

This analysis is applied on the US-CAMELS 

dataset, which comprises of 671 daily 

streamflow time series from catchments in 

the contiguous United States (CONUS) that are 

minimally impacted by human activities 

(Newman et al., 2014). 

From this dataset, 360 streamflow time series 

with the maximum temporal overlap (namely, 

35 years from 1980 to 2014) and less than 10% 

of missing values were selected. Figure 1 

shows the study area and stream gauge 

locations for the full dataset including the 

finally selected 360 stream gauge locations. 



FEMA’s NFIP

claims records

dataset Federal Emergency Management Agency 

(FEMA) published in 2019 the National Flood 

Insurance Program (NFIP) data, including more 

than two million claims records dating back to 

1970 and more than 47 million policy records

for transactions (FEMA, 2019). 

It is evident that this is a giant contribution for 

supporting scientists and policy-makers on their 

research on how the National Flood Insurance 

Program (NFIP) works, where flood damage 

occurs, and what the costs are.



EVA is widely used and applied as a tool to analyze and study 

statistics on sample values that deviate extremely from the 

mean of the full sample, in order to develop a deeper 

understanding of the sample and precise modeling strategies. 

It generates significant applications across many scientific fields 

such as hydrology, insurance and finance and can be also 

used to predict the occurrence of rare events, such as extreme 

flooding, large insurance losses, crashing of the stock market 

and many others (Reis and Thomas, 2007).

Methodology: 

Extreme value

analysis (EVA) 

distributions



Methodology: 

Threshold

selection Threshold selection is a challenge in insurance and 

especially in flood insurance practices (Robinson and Botzen, 

2020). The threshold should be chosen such that all losses 

above the threshold are “extreme losses” in the sense of 

the underlying extreme value analysis. 

On one hand, we want to choose a high threshold in order 

to investigate the behavior of the (really) extreme events. On 

the other hand, for the estimation of the parameters in the 

distribution of the extreme losses, we need many 

observations above the threshold to create a solid statistical 

foundation for our conclusions, based on a long sequence of 

values.



In order to characterize the dynamics of 

extreme streamflow values, this study 

performed a POT analysis using four

different percentage thresholds, i.e., 

90%, 95%, 98%, and 99%.

Methodology: 

Threshold

selection

Fig. 2 Diagram that shows the impact of threshold selection on Non-Exceedance 

Probability (CDF) of streamflow of the over-threshold events regarding the observed 

streamflow records as well as the ones that were developed by the process of fitting 

these observed data with the generalized Pareto distribution. Gauge ID: 01552500.



Methodology: 

Collective risk 

model 

in insurance

Sx = X1 + X2 + ··· + XN, (1)

where Xi is the ith claim amount during a certain time 

period, e.g. a year. Apparently Sx = 0 if N = 0. 

The distribution of total claim amounts, considering 

the insurance company’s portfolio as a collective that 

produces a random number N of claims in a certain 

time period, can be described by the collective risk 

model (Kaas et al., 2008).

Collective risk Sx is defined as



Methodology: 

Collective risk 

model

in flood

insurance

Similarly, regarding flood insurance practices and in case 

of an extreme flood event, the collective risk S is the total 

claim amount, considering again the portfolio of 

(re)insured properties as a collective that produces a 

random number N of claims in a certain time period of 

one year in our case. 



Methodology: 

Collective risk 

model

in flood

insurance
where Yj is the jth claim amount proxy (over-threshold 

flow fluctuation severity). Again, the total claim amounts 

S = 0 if N = 0. The definition of collective risk regarding 

flood insurance practices is a proxy of the actual 

collective risk, as it involves hydrological series and not 

actual claim amounts. In this study, regarding the 

aforementioned proxy of temporal collective risk, we use 

the term Proxy Aggregated Losses S.

Denoting the records yt of a time series, a proxy of 

temporal collective risk S is defined by Serinaldi and 

Kilsby (2016) as

𝑆 = ෍

𝑗=1

𝑁

𝑌𝑗 (2)



Methodology: 

Sequence of 

independent 

variables

A widely used method to create a sequence of independent 

variables is to shuffle (randomize) the series in order to get 

a new series which has the same marginal distribution but 

no correlation; the quantification of the distance between 

the independent and the observed variables is performed 

by comparing specific characteristics, i.e. the annual Proxy 

Aggregated Losses, the duration of the peak-over-threshold 

events and the occurrence frequency of return periods in 

the original time series and in the shuffled one. 

Hence, in order to assess the clustering of extremes of the 

360 observed time series, 100 new shuffled time series were 

reproduced for each one of the 360 original time series.

In order to characterize the dependence 

and the clustering mechanisms, it is 

important to quantify how the time series 

differs from a sequence of independent 

variables.



Methodology: 

The Hurst –

Kolmogorov 

dynamics

The exhibited persistence in many natural processes, 

including streamflow and rainfall dynamics, is known as the 

Hurst phenomenon or Hurst-Kolmogorov (HK) dynamics 

and is quantified by the Hurst coefficient H. 

In order to calculate the Hurst coefficient H and detect the 

potential long-term dependence (or else persistence, 

clustering) of a process, the most accurate method is by 

formulating the Climacogram (Koutsoyiannis, 2010), which 

has been shown to outperform estimators based on the 

autocovariance and power-spectrum (Dimitriadis and 

Koutsoyiannis, 2015). 



Methodology: 

Generalized-HK

(GHK) process
The generalized-HK (GHK) model is applied, which 

exhibits also an HK behavior in large scales but has 

more flexibility in smaller scales (Dimitriadis and 

Koutsoyiannis, 2018; note that a more advanced scheme 

has been introduced that can preserve any number of 

moments; Koutsoyiannis and Dimitriadis, 2021).

The Climacogram of the GHK model is the following, 

where the Hurst coefficient H is bounded between zero 

and one inclusive, q is positive, while λ and q have 

dimensions [x2] and [T], respectively:

In some cases, such as in this study, 

fitting of straight line in the Climacogram 

derived from the observed data cannot 

capture the full variance behavior of the 

process at the whole range of scales. 

Thus, the generalized-HK (GHK) model is 

applied.

𝛾 𝑘 =
𝜆

1 + 𝑘/𝑞 2−2𝐻 (3)



Results: 

Impact of clustering 

mechanisms 

on the correlation between 

the Average Loss 

and the number of 

over-threshold events



Clustering 

mechanisms
A common assumption in the computation of collective 

risk is the independence between Average Yi and 

Number of over-threshold events N. Here, losses Yi

denote the flows exceeding the selected threshold and N

is the number of such exceedances (number of events) 

over 365-day time windows. The relationship between 

Average Yi and N is emerged by the Spearman, Pearson

and Kendall correlation coefficient between N and the 

average value of the over-threshold flow intensities.

Impact of clustering mechanisms on the 

correlation between the Average Loss and 

the number of over-threshold events

1

𝑁
෍𝑌𝑖 =

𝑆

𝑁
= Average Yi (1)



Clustering 

mechanisms
Insurance companies’ concern about this correlation 

factor is noteworthy, as they try to investigate the 

dependence between the annual number of extreme

events and the provoked Average Yi, which is a proxy of 

the average claim amounts per over-threshold event on 

a specific region. Introducing this parameter, Pearson, 

Spearman and Kendall correlation coefficient for the 4 

selected thresholds are investigated.

Impact of clustering mechanisms on the 

correlation between the Average Loss and 

the number of over-threshold events



Fig. 1 Cumulative histogram curves of the Pearson, Spearman and Kendall correlation 

coefficient between Average Yi and number of over-threshold events N for the 360 

selected gauge locations and for all thresholds.

Figure 1 shows cumulative histogram curves of the Pearson, Spearman and Kendall correlation coefficient 

between Average Yi and number of over-threshold events N for the 360 selected gauge locations and for all 

thresholds. This study evaluates the Spearman correlation coefficient, as it is considered as the most 

suitable tool for the analysis of extremes. Instinctively, someone would expect that years that are more active 

in terms of Number of Events N tend to exhibit extreme events also in terms of Average Yi magnitude. 



Fig. 2 Spearman correlation coefficient between Average Yi and Number of over-

threshold events N for all gauge locations, left: threshold 90%, right: threshold 99%.

Indeed, our study shows that this assumption holds true in most cases, yet there are exceptions shown 

in the maps in Figure 2 suggesting that it may not be universally applicable. The following Figure (2) 

present the Spearman correlation coefficient between Average Yi and Number of over-threshold events N

for all the gauge locations for the selected thresholds.

Threshold: 90% Threshold: 99%



This depiction (Fig. 2) offers a spatial categorization of areas with high Spearman correlation coefficient

between the Average Yi and the Number of over-threshold events N, in contrast with the ones where the 

correlation coefficient is noticeably lower. In other words, this spatial categorization indicates the regions that 

are subjected to numerous claim amounts in case of a year that an extreme number of over-threshold events 

occur. Moreover, it is shown that threshold selection influence slightly the Spearman, Pearson and Kendall 

correlation coefficient.

In addition, for each one of the 360 gauges and for all selected thresholds, the Spearman correlation 

coefficient between the Average Yi and the Number of over-threshold events N was calculated for the 

observed as well as the shuffled (independent) time series in order to evaluate the clustering mechanisms on 

this correlation parameter. The following box plots show that clustering mechanisms that are prevailing over 

the observed data introduce significant correlation between the N and Average Yi in many gauge locations.

Impact of clustering mechanisms on the correlation between 

the Average Loss and the number of over-threshold events



The conclusions of this investigation are quite impressive once again, as the divergence of the correlation 

coefficient between the observed and the shuffled ones in many gauge locations is profound. In more detail, 

the shuffled series tend to underestimate the correlation coefficient in comparison with the observed ones, 

which apparently introduce the impacts of clustering mechanisms. Ignorance of this behavior could lead 

insurance policy-makers on inaccurate conclusions which could potentially provoke financial impacts.

The results that are shown on the following Figure (3) present the above-mentioned conclusions. The gauge 

locations of these figures are: 

• Suwannee River AT US 441 AT Fargo, GA (ID: 02314500) 

• Arroyo Seco NR Pasadena, CA (ID: 11098000) 

• SF Trinity R BL Hyampom, CA (ID: 11528700) 

• Cache Creek Near Jackson, WY (ID: 13018300)

Impact of clustering mechanisms on the relation between 

Average Loss and Number of over-threshold events N



Fig. 3 Box plot of Spearman correlation coefficient between Average Yi and Number of 

over-threshold events N for the shuffled as well as the observed time series for all 

thresholds.

Gauge ID: 02314500

Gauge ID: 11528700

Gauge ID: 11098000

Gauge ID: 13018300



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

Simulations
(Manolis et al.,2024)

Based on the mean Climacogram of the GHK process 

regarding the 360 empirical streamflow time series of the US-

CAMELS dataset, a persistent behavior was indicated with 

parameters 𝐻 = 0.63 and 𝑞 = 6.94 days (Manolis et al., 2024). 

Fig. 4 The mean Climacogram of the 360 selected gauge locations of the 

US-CAMELS dataset.Generalized-HK (GHK) model



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

Simulations
(Manolis et al.,2024)

The effect of this dependence structure is tracked on the 

behaviors of POT flows at the annual scale and the estimation of 

the Proxy Aggregated Losses. The behavior of daily streamflow 

in our dataset is found to be consistent with HK dynamics 

(Dimitriadis et al., 2021) characterized by moderate H parameters 

(in the range 0.6-0.7), through Monte Carlo simulations. 

Fig. 5 Hurst coefficient H of each one of the 360 selected gauge locations of the US-

CAMELS dataset.
Generalized-HK (GHK) model



A brief case study on 

spatial dependence 

mechanisms of 

US-CAMELS dataset



Extreme river flows often appear to have spatial patterns, as a result, among others, of the complicated 

hydrological processes, weather systems’ interplay and catchment structure.

On a global scale, firms that operate in the flood insurance and reinsurance sector utilize the theory and the 

applications of the spatial dependence in order to assess the probability distributions of annual losses to 

which their portfolio is exposed (i.e., the so‐called loss‐exceedance curve) and to reassure market regulators.

Moreover, governments, policy-makers and local authorities are interested in spatial dependence mechanisms, 

as they evaluate economic scenarios for investments and payments regarding flood defenses structures as 

well as compensations because of extreme flood events.

In all these cases, univariate extreme value analysis conducted at a series of sites independently cannot 

generate the year‐to‐year variation in flood losses that insurers experience (Pielke et al., 2008), and a 

multivariate analysis considering spatial dependence is required (Quinn et al., 2019). 

A brief case study on spatial dependence mechanisms of 

US-CAMELS dataset



In the following figures (6-9), regarding spatial correlation mechanisms in Hydrological Unit 3 of the US-

CAMELS dataset, the Spearman correlation coefficients between annual Proxy Aggregated Losses S (which in 

our study is in fact a streamflow-based proxy for flood claims amounts) of the gauge locations that belong to 

this Hydrological Unit are presented for all the selected thresholds. In lower thresholds, the correlation 

coefficient is higher across the unit. In contrast, increasing the threshold has a strong impact on the results, as 

the range of the correlation coefficient across the unit seems to vary.

In more detail, when the correlation coefficient between two gauge locations ranges between: 

• -0.25 and 0.25, it means that the correlation is practically zero and, as a result, flood events in these gauge 

locations can be considered as uncorrelated. 

• 0.25 and 1, it means that when a flood event occurs in one of these gauge locations, it is highly probable 

that another event will occur on the other gauge locations, too. 

• -0.25 and -1, it means that when a flood event occurs in one of these gauge locations, it is highly 

improbable that another potential event will occur on the other gauge locations.

A brief case study on spatial dependence mechanisms of 

US-CAMELS dataset



Insurance companies aim at having in their portfolios risks which have negative spatial or temporal 

correlation or, at least, zero correlation, in order to combine and aggregate risks which represent extreme 

flood events that are unlikely to happen at the same space or time. 

Accordingly, the following figures are extremely significant from an insurance viewpoint, as they reveal which 

combination of insured properties on the mentioned gauge locations could compose a profitable portfolio 

in terms of zero or negative dependence.

A brief case study on spatial dependence mechanisms of 

US-CAMELS dataset



Fig. 6 Spearman correlation between annual collective risk of gauge locations in 

Hydrological Unit 3; Threshold 90%.



Fig. 7 Spearman correlation between annual collective risk of gauge locations in 

Hydrological Unit 3; Threshold 95%.



Fig. 8 Spearman correlation between annual collective risk of gauge locations in 

Hydrological Unit 3; Threshold 98%.



Fig. 9 Spearman correlation between annual collective risk of gauge locations in 

Hydrological Unit 3; Threshold 99%.



Conclusions



Conclusions on 
the correlation between Average Yi and N

A common assumption in the computation of Proxy Aggregated Losses S (collective risk) is the 

independence between Average Yi and Number of over-threshold events N. Insurance companies’ 

concern about this correlation factor is noteworthy, since they try to investigate the dependence

between the annual number of extreme events and the provoked Average Yi, which is a proxy of the 

average claim amounts per over-threshold event on a specific region. 

Initially, we showed that the assumption that years which are more active in terms of Number of events N

tend to exhibit extreme events also in terms of Average Yi magnitude generally holds true yet it cannot be 

universally applied. 

We categorized spatially the areas with high Spearman correlation coefficient between the Average Yi and 

the Number of over-threshold events N, and the others (areas) where the correlation coefficient is 

noticeably lower. 



Conclusions on 
the correlation between Average Yi and N

In other words, this spatial categorization indicates the regions that are subjected to numerous claim

amounts in case of a year that an extreme number of over-threshold events occur. Subsequently, we 

highlighted through a box plot analysis the existence of clustering mechanisms that are prevailing over 

the observed data, as they introduce significant correlation between the N and Average Yi in many gauge 

locations, in contrast to the shuffled ones, in which the correlation is zero.



Conclusions on 
the spatial dependence on US-CAMELS dataset

Regarding the spatial dependence mechanisms of US-CAMELS dataset, these mechanisms were 

investigated as part of a case study. The analysis showed that in lower thresholds, the correlation 

coefficient is higher across the unit. In contrast, increasing the threshold has a strong impact on the results, 

as in that case the range of the correlation coefficient across the unit seems to vary greatly, especially 

when the threshold is set to 99%. 

Moreover, the extracted heat maps revealed which combination of insured properties on the mentioned 

gauge locations could compose a profitable portfolio in terms of zero or negative spatial dependence, as 

insurance companies’ aim is to have in their portfolio risks which have negative spatial or temporal

correlation or, at least, zero correlation, in order to combine and aggregate risks which represent 

potential extreme flood events that are unlikely to happen at the same space or time.
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