

EGU24 G4.1 - SATELLITE GRAVIMETRY

GRACE-FO gravity-field results incorporating the ZARM accelerometer transplant based on high-precision environment modeling

MORITZ HUCKFELDT, FLORIAN WÖSKE, BENNY RIEVERS, MEIKE LIST

Vienna, 18 April 2024

Motivation

Accelerometer data recovery through high-precision environment modeling

y_{sat}

n _{Sun} ZVBW

Transplant

- Estimation of density at positions of GRACE-C and time-correction to GRACE-D positions
- Atmospheric density ρ follows from:
- $\vec{a}_{drag} = \frac{1}{2} \rho C_D A_{proj} |\vec{v}_{inc}| \vec{v}_{inc}$
- ACT data need to be calibrated

Figure 1: Comparison of simulated accelerations and calibrated ACT1B data for January 1. 2019

Transplant

- Minimalistic approach
- Estimation of density at positions of GRACE-C and time-correction to GRACE-D positions
- $\vec{a}_{drag} = ACC \vec{a}_{mod, rad}$
- Atmospheric density ρ follows from:
- $\vec{a}_{drag} = \frac{1}{2} \rho C_D A_{proj} |\vec{v}_{inc}| \vec{v}_{inc}$
- ACC data need to be calibrated

- For low solar activity basically only effect in along-track
- For high solar activity increased effect also in cross-track

PAGE 4 MORITZ HUCKFELDT

Figure 3: Residuals of ZARM simulation and transplant data to ACH for GRACE-D for 2019 and 2023

Calibration for Transplant 35

- Calibration of JPL ACT for GRACE-C
- External calibration parameters from POD
 - Const. scale vector **s**
 - Three hourly const. bias vector **b**
 - No fitting of modelling errors
- Additional calibration of cross-track (y) and radial (z) direction
 - improves limitations of POD parameters

Figure 2: Residuals of ACT to simulated data after POD calibration and additional simulation calibration for January 01 2019

Comparison to other Transplants

Validation of Transplant

- Comparison to transplant of TUG
- Only systematic errors
 - J2
 - Higher degrees
- Validation of our transplant procedure

 $-180^{\circ}-90^{\circ}$ 0° 90° 180°

Figure 5: 2019 mean difference of ZARM and TUG transplant results in terms of EWH.

mean 2019 GOCO06s

Low and high solar activity periods

Figure 7: January 2019 degree difference of transplants w.r.t. mean 2019 GOC006s

Figure 8: May 2023 degree difference of transplants w.r.t. mean 2023 GOCO06s

Monthly Gravity Fields

Publication of Data

- https://zarm.uni-bremen.de/zarm_daten/
 - GRACE-D Accelerometer Transplant
 - GRACE-C/D Modeled Radiation Acceleration
 - Estimated Density + complementary data
 - Monthly gravity fields
 - Paper published: https://doi.org/10.1016/j.asr.2024.03.068

```
COLUMN 1: GPS time [s] - Continuous seconds past 01-Jan-2000 11:59:47 UTC

COLUMN 2: Satellite ID [-]

COLUMN 3: acceleration x [m/s^2]

COLUMN 4: acceleration y [m/s^2]

COLUMN 5: acceleration z [m/s^2]

# END OF HEADER

599572800 D -1.764162323244558e-08 -2.207747093966789e-08 -7.448168274818788e-09

599572801 D -1.765571410849392e-08 -2.200691521717946e-08 -7.439417660225845e-09

599572802 D -1.766950249255106e-08 -2.193424072768702e-08 -7.430215815176617e-09

599572803 D -1.768333971947378e-08 -2.187034288166556e-08 -7.422143707492660e-09

599572804 D -1.769766764426001e-08 -2.182889128856163e-08 -7.417201882741529e-09

599572805 D -1.771299640899845e-08 -2.182564258313409e-08 -7.417706589105833e-09

599572806 D -1.772986779336325e-08 -2.187731047212518e-08 -7.426118943968856e-09

599572807 D -1.774880439892917e-08 -2.200000117648153e-08 -7.444808373748947e-09
```

	COLUMN	1:	GPS	5 time [s] - Continuous seconds past 01-Jan-2000 11:59:47 UTC	
	COLUMN	2:	Sat	tellite ID [-]	
	COLUMN	3:	SRP	P acceleration x [m/s^2]	
	COLUMN	4:	SRP	P acceleration y [m/s^2]	
	COLUMN	5:	SRP	P acceleration z [m/s^2]	
	COLUMN	6:	ALB	B acceleration x [m/s^2]	
	COLUMN	7:	ALB	B acceleration y [m/s^2]	
	COLUMN	8:	ALB	B acceleration z [m/s^2]	
	COLUMN	9:	IR	acceleration x [m/s^2]	
	COLUMN	10:	IR	acceleration y [m/s^2]	
	COLUMN	11:	IR	acceleration z [m/s^2]	
	COLUMN	12:	TRP	P acceleration x [m/s^2]	
	COLUMN	13:	TRP	P acceleration y [m/s^2]	
	COLUMN	14:	TRP	P acceleration z [m/s^2]	
# END OF HEADER					
59	9572800	D - 1	1.08	88228778649e-08 -2.157738614046e-08 -1.646571280581e-09 -2.597196371136e-11 -5.312986147233e-11 -6.530	748307069e-11
59	9572810	D -1	1.08	89788459368e-08 -2.156833404138e-08 -1.465200155171e-09 -2.802665472403e-11 -5.750263463382e-11 -7.146	995381089e-11
59	9572820	D -1	1.09	91247519446e-08 -2.156035219465e-08 -1.283718849485e-09 -3.033415138306e-11 -6.230333730130e-11 -7.921	158821883e-11
		•			

Thank you!

This work is part of the Collaborative Research Center 1464 TerraQ and funded by Deutsche Forschungsgemeinschaft DFG.

Follow us

moritz.huckfeldt@zarm.uni-bremen.de

PAGE 11 MORITZ HUCKFELDT

References

 Bandikova, T., McCullough, C., Kruizinga, G. L., Save, H., & Christophe, B. (2019). GRACE accelerometer data transplant. Advances in Space Research, 64(3), 623–644.

[2] Sentman, L.H. (1961). Free Molecule Flow Theory and its Application to the Determination of Aerodynamic Forces.

[3] Doornbos, E. (2010). Thermospheric Density and Wind Determination from Satellite Dynamics

