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• Mineral Prospectivity Mapping (MPM) is pivotal in economic geology, 

enabling strategic identification of mineral deposits through sophisticated 

analysis of geological data. 

• Recently, MPM has navigated a shift from expert-driven interpretations to 

data-driven approaches, leveraging advanced machine learning to enhance 

predictive accuracy. 

• Despite these advancements, a critical challenge remains: accurately 

predicting in Out of Distribution (OOD) scenarios, essential for reliable 

mineral exploration.

 

Figure 1 displays a geographical representation of the northern region of Idaho 

state, collected by the Idaho Geological Survey and the US Geological Survey.
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2. Feature Filtering 3. Data Enhancement

Focusing on relevant features, 

discarding irrelevant ones

PCC → Shap Addressing imbalanced 

samples, expanding distribution

4. Causal Inference Analysis

Understanding the cause and effect relationships in the features

Conditional Average Treatment Effect 

(CATE) Estimation

Where:
• 𝑌{1）is the potential outcome if the 

instance were treated

• 𝑌{0） is the potential outcome if it 

were not treated. 

Evaluate Feature Importance 

and Reconfigure the features

5. OOD Data Split

Cross Validation with K-means 

Clustering for OOD Framework

Treat each 

feature as an 

independent 

variable and 

others as 

covariates

Conformal Prediction

• Implement conformal prediction to provide an "uncertainty region" for 

each prediction, quantifying the confidence and reliability of the 

machine learning model's outputs.

• It operationalizes the notion of nonconformity, assigning a scalar 𝛼 to 

new observations, signifying their deviation from the established data 

distribution. 

• The generated p-values are consequently interpreted as confidence 

measures, encapsulating the likelihood of prospective predictions.
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Score
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2. Predict with 1 − 𝛼

3. Construct prediction set

𝐶 𝑋𝑐𝑎𝑙  ∁ {0, 0.5, 1} 

• In each iteration, the 

true objective function 

(a surrogate model) is 

constructed using the 

Gaussian Process, 

consisting of random 

variables following a 

Gaussian distribution.
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Figure 2. A Comparative Evaluation of FPR between the 

Proposed Methodology and the Baseline Algorithm (RF)
Figure 3. Comparative Analysis of F1 Scores Across Six 

Diverse Datasets.
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Figure 4 presents a comparative visualization of prediction outcomes for the Idaho 

dataset in an OOD context:(a) Baseline Algorithm (RF) (b) Conformalized Causal 

Learning Algorithm. Upon visual inspection, it is evident that our method delineates a 

more precise region of anticipated mineral presence when contrasted with the baseline 

algorithm.

• We evaluated the 

performance of 

our methodology 

on six datasets, 

where the AUC 

ROC of our 

methodology 

surpassed the 

baseline method 

by an overall

17.84%, 

• The false positive 

rate (FPR) was 

reduced by an 

overall 84.31%
Figure 5. Comparison of AUC ROC Scores for 

Conformalized Casual Algorithm and Basealgo 

Across Six Datasets

• Conformalized causal learning system represents a monumental leap 

forward in MPM by deftly tackling the challenges of OOD scenarios and 

subjective analysis. 

• The system advanced data preprocessing and Bayesian Optimization, 

paired with the novel application of conformal prediction and causal learning, 

empower geologists with unprecedented precision and confidence. 

• The remarkable advancements demonstrated by our methodology, marked 

by a substantial improvement in AUC ROC scores and a drastic reduction in 

the false positive rate, solidify the promise and potency of data-driven 

approaches in economic geology. 
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