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 Mineral Prospectivity Mapping (MPM) is pivotal in economic geology, 2 Preprocessing Wlth C&US&' Inference .
enabling strategic identification of mineral deposits through sophisticated Al ——
analysis of geological data.
« Recently, MPM has navigated a shift from expert-driven interpretations to i i 2. Feature Filtering 3. Data Enhancement I B
data-driven approaches, leveraging advanced machine learning to enhance Interp2D 2(xg) = ZA x, ) PCC > Shap - Addressing imbalanced 100 100
predictive accuracy. kriging X0) = 2 i —— samples, expanding distribution . N
« Despite these advancements, a critical challenge remains: accurately —] =l = e e ———— | » l ’La}bel‘ Augment label
predicting in Out of Distribution (OOD) scenarios, essential for reliable | — Focusing on relevant features (+) ' -I?l P 4
mineral exploration. Preprocessing 3 . '9 0 ’ ) . . Solid label - i
discarding irrelevant ones . > c c
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Understanding the cause and effect relationships in the features Cross Validation with K-means
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- Y{0) is the potential outcome if it “OVAIAES U» : i, Figure 4 presents a comparative visualization of prediction outcomes for the Idaho
were not treated. T T T AT dataset in an OOD context:(a) Baseline Algorithm (RF) (b) Conformalized Causal
Learning Algorithm. Upon visual inspection, it is evident that our method delineates a
more precise region of anticipated mineral presence when contrasted with the baseline
algorithm.
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Figure 1 displays a geographical rep_resentaﬂon of the northern region of Idaho Gaussian distribution. \ — ‘ yperoaramier set Motrices / N Surpa_SSGd the
state, collected by the Idaho Geological Survey and the US Geological Survey. baseline method
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Conformal Prediction s U € Xear; 1 > i 2 Predict with 1 — o :% 03 8 oo « Conformalized causal learning system represents a monumental leap
o Mea t . : E = 006 forward in MPM by deftly tackling the challenges of OOD scenarios and
« Implement conformal prediction to provide an “"uncertainty region" for o $ | subjective analysis
each prediction, quantifying the confidence and reliability of the |3- Construct prediction set o 0.04 « The system advanced data preprocessing and Bayesian Optimization
machlne_ 'earf"”g model'g outpus. . . - paired with the novel application of conformal prediction and causal learning,
* |t operationalizes the notion of nonconformity, assigning a scalar «a to C(Xcq) C{0,0.5,1} 0.02 ] empower geologists with unprecedented precision and confidence.
n_ew_obs_ervations, signifying their deviation from the established data 0.0 000 « The remarkable advancements demonstrated by our methodology, marked
_(:l_lstrlbutlon.t g | v int ted £ & & by a substantial improvement in AUC ROC scores and a drastic reduction in
. e generated p-values are consequently interpreted as confidence . . : " 1 - :
measgures encapsulatin e Iikelihcc)]od ofy o gctive e Figure 2. A Comparative Evaluation of FPR between the Figure 3. Comparative Analysis of F1 Scores Across Six the false positive rate, solidify the promise and potency of data-driven
’ P 9 prosp P ' Proposed Methodology and the Baseline Algorithm (RF) Diverse Datasets. approaches in economic geology.
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