
5 Outlook

Open source, fully automatic 
pipeline for processing entire 
image sequences 
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1. Problem statement – the dataset

• Large data availability of monoscopic webcams or time-lapse camera in
the European Alps, of for example rock glaciers and (permafrost affected)
landslides.

• High temporal resolution: often hourly data.
• Long time series: often spanning decades.

→ Invaluable for geomorphic process understanding, in this case rock
glacier/landslide velocity

→ But images are low resolution and not installed in proper
photogrammetric way (no camera calibration or ground control points)

→ Traditional tracking suffers from occlusion, light changes, varying snow
cover and are too slow to handle big datasets

PIPs++ (3)

2. Persistent Independent Particle tracker: PIPs++ (3)

• Traditional motion estimation: an optimization problem – handcrafted
feature or contrast/intensity based tracked in two (consecutive) frames
only → Sensitive for light changes and occlusion + slow computation.

• PIPs++ uses multi-frame temporal context – iterative inference that
searches for the target in all frames of a sequence.

• Utilizes feature-update mechanism – can deal with (gradual) feature
appearance changes (light and snow conditions (A) and self-occlusion)

• Tracking through occlusion by using temporal priors (B).

→ Fast and robust tracking in real-world environmental applications

• Fast
• Robust
• No preprocessing 
• No retraining
• Easy 

• High spatial
and temporal
resolution
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2D to 3D scaling (1)

4 Results

• Fully automatic
• Reprojection error
2-4 pixels

We need 3D
information

We need
Photogrammetry

3. Image2Geometry: From 2D to 3D (1)

• Requires high quality UAV-SfM point cloud data
and initial values for the external orientation of the
camera (coordinates and viewing direction).

• Initial synthetic image creation (C) from the 3D
point cloud in same perspective as image

• Image to synthetic image matching (C) applying
LightGlue AI matching (2).

• Iterative process: the more matches the better
the perspective of the synthetic image

• 2D points with matched 3D values are used to
estimate external and internal camera properties.

→ With this, 3D coordinates can be calculated for
each pixel covered by the synthetic image.

4. Validation and results

• Better spatial and temporal
coverage of landform
displacements (D).

• Preliminary validation yield good
correspondence (85%).

• Validation difficult when no GPS
points are in direct view of the
camera (E).

• Resolution and accuracy very
dependent on camera properties,
viewing angle and distance, and
quality of the UAV data for scaling.

• Approach preliminary tested on
other datasets: tracking glaciers,
flow velocity in rivers, ….
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