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Tangent cylinder and polar vortices

(a) (b)

(a) Time-averaged polar vortex in the northern hemisphere. Arrows indicate tangential velocities and colour
contours indicate vorticity (taken from Olson and Aurnou (1999)). (b) Tangent cylinder inside Earth’s core.
The tangent cylinder is an imaginary cylinder tangent to the inner core boundary (ICB) and parallel to the

Earth’s rotation axis z. It cuts the core–mantle boundary (CMB) at approximately latitude 70◦.

The secular variation of the geomagnetic field suggests the presence of anticyclonic polar vortices in the
Earth’s core. Using the frozen-flux approximation, the inferred peak azimuthal velocity of the polar vortex
is calculated to be 0.6 to 0.9◦ yr−1 (Olson and Aurnou, 1999; Hulot et al., 2002).

The polar vortex is an anticyclonic flow located in the polar region of the outer core. Under the influence
of magnetic field, the polar azimuthal flow is thought to be produced by one or more coherent upwellings
within the tangent cylinder, offset from the rotation axis.

Aim of the study:
Our objective is to define the parameter space within which the geodynamo operates, ensuring the emergence
of a polar vortex that aligns with the observed speed of the anticyclonic flow.
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Governing equations of the dynamo model

The non-dimensional equations for velocity, magnetic field, and temperature in MHD under the Boussinesq
approximation for our dynamo model are as follows:

E Pm−1
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∂ t

+(∇×u)×u
)
+ ẑ ×u =−∇p∗+PmPr−1RaT r +(∇×B)×B+E∇

2u, (1)

∂T

∂ t
+u.∇T = PmPr−1

∇
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∂B
∂ t

= ∇× (u×B)+∇
2B, (3)

∇.u = ∇.B = 0, (4)

The modified pressure p∗ is given by p+ 1
2E Pm−1 |u|2. The dimensionless parameters in the above equations

are the Ekman number, E = ν/2ΩL2; the Prandtl number, Pr = ν/κ; the magnetic Prandtl number, Pm= ν/η;
and the modified Rayleigh number, Ra= gαβL2/2Ωκ. The parameters g , ν, κ, and α denote the gravitational
acceleration, kinematic viscosity, thermal diffusivity, and coefficient of thermal expansion, respectively.
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Magnetic-Archimedean-Coriolis (MAC) waves

We study the evolution of a density perturbation ρ ′ that evolves in an unstably stratified fluid layer under
a uniform axial magnetic field B and background rotation Ω.

In the diffusionless limit (ν = κ → 0), simplifying the linearised governing equations through algebraic

operations and considering plane wave solutions for the stream function ψ in the form ψ̂ ∼ eiλ t leads to the
following dispersion relation (Sreenivasan and Maurya, 2021).
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The fundamental frequencies in (5) are given by,
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representing square of linear inertial waves, Alfvén waves, internal gravity waves and magnetic diffusion
respectively. In unstable density stratification, ω2

A < 0. Here, k2 = k2
s +k2

z .

This characteristic equation has five roots. First two roots represent oppositely travelling fast Magnetic-
Archimedean-Coriolis (MAC) waves, two other roots represent oppositely travelling slow MAC waves, and
the fifth root represents the overall growth of the velocity perturbation.

▶ Fast MAC waves - These are linear inertial waves weakly modified by the magnetic field and
buoyancy.

▶ Slow MAC waves - These are magnetostrophic waves generated by the balance between the
magnetic, Coriolis and buoyancy forces.
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Intensity of the MAC waves
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(a): Variation of absolute values of the frequencies with the Lehnert
number Le.

Le = VM/2Ωδ

Here VM is the Alfvén velocity and δ is the length scale of the
perturbation. The slow MAC wave is present when
|ωM |> |ωA|.

(b): Variation of the kinetic energy of the
fast and slow MAC waves (normalized
by the nonmagnetic kinetic energy) with
|ωM/ωC |. The slow MAC wave intensity
is comparable to that of the fast MAC
wave when |ωM/ωC | ∼ 1.

(c): Variation of the peak z velocity of fast
and slow MAC waves with |ωA/ωM | for
Le = 0.09. The slow wave are attenu-
ated at |ωA/ωM | ∼ 1.

(d): The variation of the φ component of ki-
netic energy, normalized by its nonmag-
netic value, with progressively increas-
ing forcing for a given ωM/ωC .
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Fundamental frequencies (dynamo model)

(a) Inside the TC (b) Outside the TC

Dipolar regime
|ωC | ≫ |ωM | ≫ |ωA| ≫ |ωη |

Reversing/Multipolar regime
|ωC | ≫ |ωM | ∼ |ωA| ≫ |ωη |

The solid vertical line in-
dicates the onset of the
slow MAC waves inside the
tangent cylinder while the
dashed vertical lines mark
the suppression of the slow
waves. The dynamo param-
eters are E =6×10−5, Pm=
Pr = 5.

Then slow MAC wave is
present when |ωM |> |ωA|
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Isolated plume convection

Bz uz uφ

Ra= 12000 (Dipolar dynamo)

Ra= 18000 (Dipolar dynamo)

Ra= 21000 (Reversing dynamo)

Horizontal (z) section plots within
the tangent cylinder of the ax-
ial magnetic field Bz at z = 0.9
(left panels), uz at z =1.4 (middle
panels) and uφ at z = 1.4 (right
panels)
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Isolated plume convection

Before the onset of the Slow MAC waves After the onset of the Slow MAC waves
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Variation of the time-averaged peak value of the axial (z) velocity with z within the TC for (a) Ra = 800 and
(b) Ra= 1000.
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Polar vortex intensities and applications to the inertia-free core

(a) (b)

(c) (d)

Horizontal (z) section plots at height z =
1.4 above the equator of the time and az-
imuthally averaged flow uφ within the TC. (a)
Ra=12000, (b) Ra=18000, (c) Ra=21000,
(d) nonmagnetic run at Ra=12000.

The maximum dimensionless time and az-
imuthally averaged value of uφ is measured
within the TC, with its radial distance from
the rotation axis. For example, at Ra =
18000, this magnitude of uφ is 814, at radius
0.35. This could be scaled up to its value
in the Earth’s core (Sreenivasan and Jones,
2005), giving,

uφ ,sc =
uφ η

L
= 3.602×10−4ms−1 ≈ 0.81◦yr−1,

where η and L have the values 1 m2s−1 and
2.26×106 m respectively.

To obtain the observed peak azimuthal velocity of 0.6–0.9◦yr−1 (Olson and Aurnou, 1999; Hulot et al., 2002),
the Rayleigh number in the low-inertia geodynamo must be ∼ 103 times the Rayleigh number for the onset of
nonmagnetic convection.
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Concluding remarks

We have constrained a parameter space within which the geodynamo operates, ensuring the emergence of
the polar vortices that aligns with the observed speed of the anticyclonic flow in the polar region. To obtain
the observed peak azimuthal motions of 0.6–0.9◦ yr−1 , the Rayleigh number in the low-inertia geodynamo
must be 103 times the Rayleigh number for the onset of nonmagnetic convection.

For |ωM/ωC | ∼ 0.1, the time and azimuthally averaged intensity of the polar vortex is much higher than
that in nonmagnetic convection. If the forcing is so strong as to cause polarity reversals, the field within
the TC decays away, resulting in much weaker circulation in the polar regions.

The slow MAC waves generated at the length scale of convection support the isolated TC upwellings in the
dipole-dominated dynamo regime, in turn producing strong anticyclonic polar vortices. In regions where the
magnetic flux is relatively weak, fast MAC waves are excited, although these waves are unable to penetrate
the neutrally buoyant fluid layer that lies above them.

For further reading, you can refer to Majumder and Sreenivasan (2023).

10



References

Hulot, G., Eymin, C., Langlais, B., Mandea, M., and Olsen, N. (2002). Small-scale structure of the geodynamo
inferred from Oersted and Magsat satellite data. Nature, 416(6881):620–623.

Majumder, D. and Sreenivasan, B. (2023). The role of magnetic waves in tangent cylinder convection. Phys.
Earth Planet. Inter., 344:107105.

Olson, P. and Aurnou, J. (1999). A polar vortex in the Earth’s core. Nature, 402(6758):170–173.

Sreenivasan, B. and Jones, C. A. (2005). Structure and dynamics of the polar vortex in the Earth’s core.
Geophys. Res. Lett., 32(20).

Sreenivasan, B. and Maurya, G. (2021). Evolution of forced magnetohydrodynamic waves in a stratified fluid.
J. Fluid Mech., 922:A32.

11


	References

