Quantifying Carbon Dioxide and Methane Hotspots: A Simulation Study with the TANGO Satellite Initiative

- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
- ² Netherlands Institute for Space Research SRON, Leiden, Netherlands

Twin Anthropogenic Greenhouse Gas Observers (TANGO) Mission

- Launch: 2027, part of ESA's SCOUT program
- Satellites: TANGO-Carbon & TANGO-Nitro
- Focus: CH_4 , CO_2 , and NO_2 emissions at industrial scales
- Technology: Cubesat with 1.6-µm sensor, High-res spectrometers, shortwave IR & visible spectra
- Resolution: 300x300 m over 30x30 km
- Target: ≥2 Mt/year CO₂, ≥5 kt/year CH, emissions

Development of a Global Emission Point Source Inventory

- Challenge: Limited coverage, small footprint
- Maneuver Constraint: Stabilization period post-roll maneuver limits imaging
- Observation Limitation: Can't observe all sources in one pass; prioritization required
- Simulation: 4-day seasonal trajectory simulations for global coverage
- Data Collection: Prioritize significant emission sources from global inventory (TNO) within observational constraints

Outlook

- Develop a list of potential targets in Germany/Europe with a ranking of their importance and usefulness.
- Quantification of errors for CO_2 and CH_4 emission estimates.
- Explore complex aerosol scattering impact and other various sources of errors on retrieval accuracy.

Harikrishnan Charuvil Asokan¹, Jochen Landgraf², Leonie Scheidweiler¹, and André Butz¹

Estimated Emission targets

Landfills (CH₄): 71

• Fossil fuel extraction (CH_4): 97

• Fugitive emissions from coal mining (CH_4) : 142

Case 1: Baseline - Omit aerosol scattering effects

Objective

- GHG emission accuracy of high-resolution satellites, with priority in Europe, including the identification of both specific and diffuse emission sources.
- The scope and density of satellite measurements across Europe, focusing on the precision of emission rate estimates for various sources.
- Calibration and validation of emission estimation methods globally, leveraging identified hotspots to refine these processes.

CO₂ retrieval for a CO2Image-like sensor: synthetic retrievals (RemoTeC) and emission estimates

Case 2: Aerosol Scattering in Forward Model Only - Vary AOD, assess discrepancies.

Selected References

• Butz, A. et al. (2009). Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. Appl. Opt., 48(18), 3322-3336. https://opg.optica.org/ao/abstract.cfm? • Strandgren, J. et al. (2020). Towards spaceborne monitoring of localized CO2 emissions: an instrument concept and first performance assessment. Atmos. Meas. Tech., 13, 2887–2904. https://doi.org/10.5194/amt-13-2887-2020URI=ao-48-18-3322

Case 3: Consistent Aerosol Treatment - Include scattering effects in both models.