

Increased atmospheric CO₂ and the transit time of carbon in terrestrial ecosystems

Global Change Biology, 29(23), 6441-6452.

Estefanía Muñoz^{1,2} Ingrid Chanca¹ Carlos Sierra¹

¹Max Planck Institute for Biogeochemistry

²Ecological and Forestry Applications Research Centre - CREAF

What happens to the fixed carbon by the vegetation?

- Where is it allocated?
- How long it remains stored?
- How do changes in abiotic factors modify ecosystem metabolism?

What happens to extra carbon fixed by vegetation?

Vegetation is fertilized under increased CO₂ turning **assimilated** carbon into biomass.

Extra assimilated **carbon is emitted back to the atmosphere** via respiratory fluxes.

Allen & Goodman (2004). Encyclopedia of plant and crop science, 346-348. Jiang et al. (2020). *Nature*, *580*(7802), 227-231.

Comprehensive quantification of iCO₂ effects involves answering how much and for how long carbon is stored

Many authors have asked the challenging question **¿where does the carbon go?**

e.g. De Kauwe et al., 2014; Jiang et al., 2020; Körner et al., 2007.

Continuous range of temporal scales:

- **Hours to days**: assimilation and respiration of simple photosynthates.
- **Centuries to millennia:** organic matter transfers to soil.

How much and **for how long** is carbon stored in an ecosystem?

Key concept: transit time distribution of carbon

Transit time (τ): time elapsed since carbon enters the system until it is released.

- Linking of main ecosystem processes
- Covering a wide range of temporal scales
- Field experiments and modelling.

τ describes how C fixed returns to the atmosphere over a wide range of temporal scales

- Most carbon from foliage and fine litter is respired in very short timescales.
- At **longer timescales**, almost all carbon is being respired except some proportions from the **soil** and the **roots**.
- The dynamics of the **ecosystem** are driven by what happens in each pool **differently over time**.

Sierra, C. et al. (2021). Journal of Ecology 109(8), 2845-2855.

The time carbon spends in ecosystems is the same regardless of how much carbon enters

The time carbon spends in ecosystems depends on carbon fate and the rates at which it is processed

There are three techniques for obtaining the carbon transit time

- **Modelling:** Mass balance equations
- Induced tracers: isotopic labelling techniques
- Natural tracer: $\Delta^{14}C$

These methods are complementary: tracers provide independent measurement-based information useful for model structure identification, parameterization and calibration.

Concluding remarks and implications

- 1. τ distribution provides **key** information to understand the **effect of iCO**₂ in terrestrial ecosystems.
- 2. τ permits the study of **future scenarios** of fossil fuel emissions and potential interaction with other factors such as **nutrient** and **water availability**.
- 3. In mature forests, most carbon fixed does not remain stored for long timescales. If iCO₂ leads to **increased biomass** and carbon accumulation, important **changes in B** must be responsible.

Thanks!

e.munoz@creaf.uab.cat

For further discussion: Hall X1, Poster **X1.35**

Alexander von Humboldt Stiftung/Foundation

τ quantifies the proportions of extra carbon stored in biomass and respired back

Generalized nonlinear nonautonomous

$$\frac{d\mathbf{x}}{dt} = \dot{\mathbf{x}}(t) = \mathbf{u}(\mathbf{x}(t), t) + \mathbf{B}(\mathbf{x}(t), t) \cdot \mathbf{x}(t)$$

x: content of carbonu: external carbon inputsB: rates of carbon cycling and transfers.

Linear autonomous

$$\dot{\mathbf{x}}(t) = \mathbf{u} + \mathbf{B}\mathbf{x}(t)$$

 $f(\tau) = -\mathbf{1}^{\mathsf{T}}$

 $\mathbb{E}(\tau) = -1$

τ Captures different **paths** that a particle of C could take to travel through an ecosystem and **how much time** it would be stored.

$$\mathbf{B} e^{\mathbf{\tau}\mathbf{B}} \frac{\mathbf{u}}{\|\|\mathbf{u}\|}$$
Proportion of new extra carbon:
- Stored in biomass
- Respired back

τ quantifies the proportions of extra carbon stored in biomass and respired back

Linear autonomous

Sierra, C., et al. "A decrease in the age of respired carbon from the terrestrial biosphere and increase in the asymmetry of its distribution." *PTRS A* 381.2261 (2023).

Key concept: transit time distribution of carbon

Objective: Usefulness and robustness of transit time concept (Bolin & Rodhe, 1973; Eriksson, 1971; Thompson & Randerson, 1999) for understanding the **effects of iCO₂** on ecosystem carbon dynamics.

- What transit time is?
- Example of usefulness
- Currently available techniques for quantification
- Final remarks