Predlctlng Coastal Flooding in the Mediterranean with Remote Sensing and Machlne Learning
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e A data-driven approach to the identification of areas susceptible Observed coastal ﬂooding events Iin the area
to coastal (and compound) flooding for the Italian region Liguria.

e Supervised binary classification — models of varying levels of . .
complexity and spatial aggregation. Coastal Flooding on Oct. 29th, 2018 in Rapallo SAR flood index thresholding

e An insight into the use of Remote Sensing (optical and SAR) within
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Option 1: flooded area extent retrieval from optical imagery
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Figure 1 (left): Map of the study area and superimposed outline of individual Units ——

of Analysis (UoAs) utilised in the study. The top-Lleft portion of the image highlights L ! - 7 ; STy A A

the location of the study area (in red) within the Italian territory.

Figure 2 (above): Detail of the coastline in the Rapallo area, including the Carlo
10 20 30 40 50km | Riva port: map of the modelled ground truth data used in the study (blue vector)
superimposed to optical imagery.
Base map for both images: ESRI Satellite.
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Data and methods
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the study area.
e Binary rasters created from maps
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Predictors: _
e aspect (cf. Fig. 2) (0 = no flood,; 1 = flood).
e curvature - -
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e Topographic Position Index (TPI) computational times with known data on e permanent water mask — some flooded pixels lost due to image resolution
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Option 2: flooded area extent retrieval from Synthetic Aperture Radar (SAR)

Preliminary Results
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