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● A data-driven approach to the identification of areas susceptible 
to coastal (and compound) flooding for the Italian region Liguria. 

● Supervised binary classification → models of varying levels of 
complexity and spatial aggregation. 

● An insight into the use of Remote Sensing (optical and SAR) within 
the study is presented here. Available satellite data for flooding event on Oct. 29th, 2018 in Rapallo

Sensor Date (dd/mm/yyyy) Status Orbit-Polarisation Resolution

Sentinel-1B 21/08/2018 Before flood Ascending/VH 10 m

Sentinel-1A 22/08/2018 Before flood Ascending/VH 10 m

Sentinel-1A 27/08/2018 Before flood Ascending/VH 10 m

Sentinel-1B 01/11/2018 After flood Ascending/VH 10 m

Sentinel-1A 02/11/2018 After flood Ascending/VH 10 m

Sentinel-2A 19/10/2018 Before flood – – 20 m

Sentinel-2B 03/11/2018 After flood – – 20 m

Coastal Flooding on Oct. 29th, 2018 in Rapallo

Figure 1 (left): Map of the study area and superimposed outline of individual Units 
of Analysis (UoAs) utilised in the study. The top-left portion of the image highlights 
the location of the study area (in red) within the Italian territory.
Figure 2 (above): Detail of the coastline in the Rapallo area, including the Carlo 
Riva port: map of the modelled ground truth data used in the study (blue vector) 
superimposed to optical imagery. 
Base map for both images: ESRI Satellite.

Option 1: flooded area extent retrieval from optical imagery

Storm Adrian → October 
29-30th, 2018 
(Tempesta Vaia). 

● Strong winds up to  
120 km/h

● Wave heights up to 
7-10 m 

Impact: flooding in 
Rapallo and destruction 
of the Carlo Riva port. 

Figure 7 (top): Damage suffered by the Carlo Riva port in Rapallo after the 29-30th October 2018 storm event. Picture by Parma1983 on Wikimedia Commons, licensed under CC-BY-SA-4.0.
Figure 8 (bottom): Damage on the seafront in Rapallo after the 29-30th October 2018 storm event. Picture by Dapa19 on Wikimedia Commons, licensed under CC-BY-SA-4.0.
 

Figure 9: Optical (a,b) and SAR (c,d) satellite imagery, before (a,c) and after (b,d) the coastal flood event in Rapallo (Oct. 29th, 
2018). 
(a): Sentinel-2 on Oct. 16th, 2018. 
(b): Sentinel-2 on Nov. 3rd, 2018. 
(c): Mean of the pre-event image stack backscatter coefficient (Sentinel-1).
(d): Minimum of the post-event image stack backscatter coefficient (Sentinel-1).
The Carlo Riva port is highlighted by an orange circle in (d).
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Figure 10: Optical Imagery and corresponding flood extent segmentation for 
the Rapallo area obtained with the ML4Floods package.

Figure 11: RII (a), DII (b) and NDFI (c) for the flood event analysed (Rapallo coastline is outlined in blue in all images, including the Carlo Riva port in the upper-right area). Images (d-e-f) highlight in red pixels 
considered as flooded based on the default 1.5 k coefficient for flood thresholding, while images (g-h-i) are based on the k-coefficient for flood thresholding optimised for maximum agreement among the 
three indices. The right-hand side of the image shows histograms of the distribution of the three indices considered across all pixels included in the image, with lines corresponding to default (grey, dashed) 
and optimised (black, continuous) thresholds for flood identification.

Data and methods

Desired Output:

Each pixel classified as either flooded or not 
flooded in the event of a medium probability 
flooding event (RT = 100 yrs) (cf. Fig. 6). 

Predictors:
● aspect
● curvature
● slope
● distance from coastline
● DEM
● DEM-derived indices: Overland Flow Distance 

(OFD) from channel network, its vertical (VOFD) 
and horizontal (HOFD) components, Vertical 
Distance to Channel (VDC)

● lithology
● land cover
● spectral indices: NDBI, NDVI, NDWI
● Topographic Position Index (TPI)
● Topographic Wetness Index (TWI)
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Comparison of model performance and 
computational times with known data on 

hydrodynamic models

Ground Truth:
● EU Floods Directive flood risk 

maps.
● Several modelling methodologies 

(numerical/simplified) used within 
the study area. 

● Binary rasters created from maps 
(cf. Fig. 2) (0 = no flood; 1 = flood).

Observed coastal flooding events in the area

Next Steps

Model Complexity
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Figures 3 (upper-left) and 4 (upper-right): 
Boxplots of model performance metrics for linear 
(left) and Random Forest (right) models trained on 
individual Units Of Analysis (cf. Fig. 1).
Figure 5 (left): Boxplots of computational times 
for linear and RF models.

Preliminary Results
Option 2: flooded area extent retrieval from Synthetic Aperture Radar (SAR)

Clouds in the post-event images → ML-based image segmentation on Sentinel-2 
imagery has excessive cloud cover over the area (cf. Nov. 3rd, 2018 in Fig. 10).

Three SAR change 
detection-based indices are 

considered.

Index thresholding for flood 
identification is area-dependent 

and can vary widely.

Validation by comparison with 
optical flood indices (e.g. MNDWI) 

not feasible in this case.

Note: 
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Notes:
● explore other approaches
● permanent water mask → some flooded pixels lost due to image resolution
● flooded pixels too few to serve as ground truth

1. Consider model uncertainty and explainability

2. Compare model performance: global VS local → what are the relevant factors for 

flood susceptibility locally?

3. Compare model performance: less complex VS more complex models → are 

performance improvements worth the increased complexity?
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Figure 6 (above): Model Outputs obtained with the Random Forest 
model for the Rapallo area. Different colours are used to identify true 
negatives (blue), true positives (red), false positives (light blue) and false 
negatives (orange) produced by the model. The flooded area (TP) is the 
same as shown in Fig. 2.
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