Predlctlng Coastal Flooding in the Mediterranean with Remote Sensing and Machlne Learning
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e A data-driven approach to the identification of areas susceptible Observed coastal ﬂooding events Iin the area
to coastal (and compound) flooding for the Italian region Liguria.

e Supervised binary classification — models of varying levels of . .
complexity and spatial aggregation. Coastal Flooding on Oct. 29th, 2018 in Rapallo SAR flood index thresholding

e An insight into the use of Remote Sensing (optical and SAR) within
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Option 1: flooded area extent retrieval from optical imagery
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Figure 1 (left): Map of the study area and superimposed outline of individual Units ——

of Analysis (UoAs) utilised in the study. The top-Lleft portion of the image highlights L ! - 7 ; STy A A

the location of the study area (in red) within the Italian territory.

Figure 2 (above): Detail of the coastline in the Rapallo area, including the Carlo
10 20 30 40 50km | Riva port: map of the modelled ground truth data used in the study (blue vector)
superimposed to optical imagery.
Base map for both images: ESRI Satellite.
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Data and methods
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the study area.
e Binary rasters created from maps
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Predictors: _
e aspect (cf. Fig. 2) (0 = no flood,; 1 = flood).
e curvature - -
‘ S lo pe » N 3000 -
. . Modelling , s s 2000
e distance from coastline Matrix H Model Con
® DEM Figgl)re 9: Optical (a,b) and SAR (c,d) satellite imagery, before (a,c) and after (b,d) the coastal flood event in Rapallo (Oct. 2gth, :: :: 0 5 = e o - %
. . . . . [ Linear ' 2013). . N
® DEM —del’lved |nd|CeS. Overland Fl.O\X/ DIStanCe -4_'§ Classifier + All E\E gti;?%"e; NA. 22; 22232?{:2 22 ﬁg&},ﬁ?:&? Figure 10: Optical Imagery and corresponding flood extent segmentation for Figurg 11:de| (?{, Dl}lI (Z)Snd ,;llDFlt(ﬁ) fgr;helpooiever%; alnag[yfsedﬂ(Rag?kl\lo Cﬁa[sglline is ﬁ.lﬁu.ined in tiluiip)all irEageZ, inctlﬁdiﬂg themCerci 1Eeivz]—lepo(rjttig thehu%per—rig?t alrei.flmages'(d-e-f) highlighttin red pixtils
I I , : : r ined wi . considered as flooded based on the default 1.5 k coefficient for flood thresholding, while images (g-h-i) are based on the k-coefficient for flood thresholding optimised for maximum agreement among the
(OFD) fI’Om Channel‘ network' |tS Vert|Ca|. (VOFD) § Study Area 23)) I\J?nﬁpnii,t\h; tpgg_ﬁgsgtegi?ier;atzzkstt):g:z(;aﬁiég&g?gg@%éﬁiﬂggﬁ;%e[_l). ihe Rapatio area obtamed with the MLaFloods package three indices. The right-hand side of the image5sh0\x/s histograms of the distributign of the thrge ingices considered across all pixels included in the image, \Sithplines corresponding to o?efault (grey, das%ed)
ahd horizontal (HOFD) COmponentS, Vert|Cal_ -_,(_,i Image The Carlo Riva port is highlighted by an orange circle in (d). and optimised (black, continuous) thresholds for flood identification.
. Li : :
Distance to Channel (VDQC) & Clalsr;ieﬁaerr , | RF Classifier + | Segmentation
. - Individual with CNN +
o llthOlOgy Individual UoAs some test - . . : :
e land cover Uohs Uohs Clouds in the post-event images — ML-based image segmentation on Sentinel-2 Notes:
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e Topographic Position Index (TPI) computational times with known data on e permanent water mask — some flooded pixels lost due to image resolution
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Option 2: flooded area extent retrieval from Synthetic Aperture Radar (SAR)

Preliminary Results
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