The importance of *in-situ* soil moisture observations to evaluate the main drivers of event runoff characteristics in small-scale catchments

Adriane Hövel¹, Christine Stumpp¹, Heye Bogena², Andreas Lücke², Michael Stockinger¹

¹University of Natural Resources and Life Sciences, Vienna, Department of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria ²Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere Institute (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany

Der Wissenschaftsfonds.

Grant number: 10.55776/P34666

 \boxtimes adriane.hoevel@boku.ac.at

Relevance and research gap

- conditions.

- difficult.
- characteristics.

Objectives

- time series-based pattern search.
- surrogate measures.

Figure 2. Study catchments of Wüstebach (Eifel National Park, Germany, partly forested), and Rollesbroich (Eifel region, Germany, grassland).

Results

Impact of antecedent wetness conditions on event runoff coefficients (ERC):

		Riparian zone				Wüstebach			Hillslop	е	Rollesbroich								
ERC	0.32	0.48	0.58	0.35	0.40	0.40	0.47	0.59	0.58	0.40	0.40	0.40		0.52	0.35	0.40	0.32	0.32	0.29
ERC	0.17	0.19	0.29	0.01	0.17	0.17	0.23	0.31	0.32	0.17	0.17	0.17		0.25	0.16	0.33	0.08	0.08	-0.01
	ASM5	ASM20	ASM50	API5	API20	API50	ASM5	ASM20	ASM50	API5	API20	API50		ASM5	ASM20	ASM50	API5	API20	API50

Figure 4. Spearman rank correlation coefficients between event runoff coefficient (ERC) and antecedent soil moisture (ASM) as well as antecedent precipitation index (API) for similar (top row) and different (bottom row) runoff patterns

compared to a different one (Fig. 4).

Figure 5. Scatterplots of event runoff coefficients (ERC) and antecedent soil moisture in 5 and 50 cm depth (ASM5 and ASM50, resp.) in (a) Wüstebach and (b) Rollesbroich, separated between similar and different runoff.

Conclusions

- in the two catchments.
- meteorological drivers of runoff characteristics.
- conditions.

Abstract ID: EGU24-9338

Correlation coefficients between ERC and antecedent wetness conditions are generally higher in case of a similar runoff pattern

ERC increases after **ASM threshold** for similar runoff patterns (Fig. 5).

Temporal patterns of similar soil moisture conditions were detected

Splitting runoff into similar and different patterns **under similar soil moisture conditions** can provide further insight into the hydro-

Antecedent precipitation index as proxy for soil moisture conditions could not reflect the relationship between runoff characteristics and wetness