Quantification of climate induced changes in groundwater levels using fuzzy rule-based models.

Ronja Iffland, Uwe Haberlandt

1 Motivation

Direct prediction of groundwater levels from climate data.

- Assessment of future groundwater levels under the influence of climate change.
- Using direct link between climatic influences and groundwater levels.

2 Methodology

- Calculation of meteorological indices taking moving averages and time lags into account.
- Variable selection using Random Forest.
- Fitting station wise Fuzzy rule-based models.

Rule system optimization using Simulated Annealing (Aarts and Korts, 1989).

- Fitting Multiple linear regression models (MLR). $GWL \sim f(meteorological indices)$
- Appling climate model data based on the RCP8.5 climate scenario.

3 Results

Fig. 1: Nash-Sutcliffe efficiency (NSE), normalised root mean square error (NRMSE) and normalised bias (NBias) of estimates from observed mean groundwater levels using Fuzzy rule-based models (Fuzzy) and Multiple linear regression models (MLR) for the calibration period (dark blue) and validation period (light blue) over 114 stations.

EGU General Assembly, 14 – 19 April 2024, Vienna & Online

Groundwater levels in Lower Saxony can be described by meteorological indices using both fuzzy rule-based models and MLR approaches.

4 Conclusion

- Fuzzy rule-based models.
- \rightarrow pronounced changes.
- As a result, the mean annual amplitudes increase slightly.
- \rightarrow Slightly delayed timing of the annual extremes.

Fig. 3: Changes in the intra-annual dynamics of groundwater levels.

 \rightarrow Model performance of MLR more robust than that of the currently calibrated

Both applied methods show similar change signals, with MLR showing slightly more

 \rightarrow Mean annual low levels decrease, while mean annual high levels decrease slightly.

 \rightarrow The changes in the far future are in general more apparent than in the near future.

iffland@iww.uni-hannover.de

Additional Information

Fig. 4: Available groundwater level stations for Lower Saxony, Germar

Study area and data

- Lower Saxony, Germany
- Observed monthly groundwater level data (144 stations with sufficient time series length)
- Observed daily climate data (Interpolated on 1x1km grid)
- Climate model data (Ensemble of 8 climate model projections based on RCP8.5 climate scenario)

Indices

- Mean Precipitation [mm/d]
 Evapotranspiration [mm/d]
- Minimum, average and maximum temperature [°C]
- □ Relative Humidity [%]
- □ Global radiation [W/m2]
- □ Groundwater recharge (Ertl et al., 2019) [mm/d]
- Mean climatic water balance [mm/d]
- Standardized Precipitation Index (McKee et al., 1993) [-]
- Standardized Precipitation-Evapotranspiration Index (Vicente-Serrano et al., 2010) [-]

Change signals

- Change signals calculated according to DeltaChange approach and normalised with standard deviation of the observed data of the reference period (1981-2010).
- Normalized change signal:

 $100 * \frac{\text{DeltaChange}}{\text{sd(obs)}_{ref}} [\%]$

with: DeltaChange = obs * simulated change signals

REFERENCES

- [1] Aarts, E., Korst, J., 1989. Simulated Annealing and Boltzmann Machines. John Wiley & Sons, New York, NY.
- [2] Ertl, G., Erbracht, J., Engel, N., Bug, J., & Herrmann, F. (2019). Grundwasserneubildung von Niedersachsen und Bremen-Berechnungen mit dem Wasserhaushaltsmodell mGROWA18: Landesamt für Bergbau, Energie und Geologie.
- [3] McKee, T.B., Doesken, N.J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology. American meteorological society, Boston, USA.
- [4] Vicente-Serrano S.M., Begueria S., Lopez-Moreno J.I. (2010). A Multiscalar Drought Index Sensitive to Global Standardized Precipitation The Warming: Evapotranspiration Index. Journal of Climate 23: 1696-1718.

75