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Figure 3: (left) Principal component analysis of pigments in Amsoldingersee, (right) trajectories of the pigment compositing during 
anoxia in Amsoldingersee. The second and third principal components are used because they reflect composition shifts.

Figure 4: Schematic sketch of the Amsoldingersee system during colder phases of the record. The lake develops a 
seasonal ice cover, depleting oxygen, and allowing photosythetic bacteria to grow under the ice.
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Why? Eutrophication and associated hypoxia are globally 
deteriorating lake water quality, threatening aquatic eco-
systems and water resources [1,2]. The link between rapid 
climate warming and eutrophic phases in natural environ-
ments needs to be better understood. 

Research Questions:
I. What drove algal community shifts during large-scale climatic re-arrangements? 
II. Did higher aquatic primary productivity lead to anoxia or vice versa? 
III.How did the aquatic ecosystems and primary producer communities evolve during 

the Late-Glacial on the Swiss plateau? 

What? We investigated temperature-driven phytoplankton successions and chemical 
feedbacks (P, Fe, Mn) occuring during rapid warmings throughout the Late-Glacial 
(e.g., Bølling-Allerød; 16-11 ka BP) in Amsoldingersee and Soppensee.

Introduction

Did climate warming cause eutrophication and anoxia? 
Lessons learned from Late-Glacial sediments of lakes Amsoldingen and Soppen, Switzerland. 

Stan J. Schouten1,2, Petra Zahajská1,2, Noé R.M.M. Schmidhauser1,2, Andrea Lami3, Paul D. Zander4, Rik Tjallingii5, Petra Boltshauser-Kaltenrieder1,6, 
Jacqueline van Leeuwen1,6, Luyao Tu7, Hendrik Vogel1,8, and Martin Grosjean1,2 

Methods

• High-resolution productivity from hyperspectral imaging [4]. 
I. Bacteriopheophytin-a (Bphe-a) – purple sulfur bacteria (PSB; 

purple; Figure 1 & 2). 
II. Bacteriopheophytin-e (Bphe-e) – green sulfur bacteria (GSB; 

blue; Figure 1 & 2).              
  Hypolimnetic anoxia with chemocline in the photic zone.

III.Chlorophylls and chlorins – productivity (green; Figure 1 & 2).
IV. Phycocyanin – cyanobacteria (pink; Figure 1 & 2)

▪ Algal community: Low resolution 
pigments using HPLC-DAD [3].

▪ Redox sensitive elements:      
Sequential phosphorous, iron, 
and manganese extraction using 
ICP-MS

▪ Dust & runoff: X-ray fluores-
cence

▪ Age: 14C-dating & tephro- and 
palynostratigraphy 

▪ Nutrients: CNS-analysis

Conclusions
• Natural rapid warming, like the Bølling-Allerød, increased productivity. 

However, nutrients are more important in regulating the productivity re-
cords in detail (Figure 1, ~14.2 ka & Figure 2, ~14.4 ka).

• Dust and tephra inputs can fertilise phytoplankton communities by sup-
plying phosphorous, silica and iron in nutrient limited lakes (Figure 2, ~ 
Younger dryas & LST).

• Internal redox feedback did occur in Soppensee, a deep lake with a catch-
ment that has sufficient input of inorganic phosphorous to the lake (Fig-
ure 1, ~14.2 ka).

• Several phases of extensive anoxia exist. The lakes stratified due to wind 
shielding by surrounding tall vegetation or ice-cover. (Figure 1, ~Bølling & 
Figure 2 ~Younger Dryas)[8].

• Anoxia did not cause irreversible shifts in pigment composition, hence 
phytoplankton communities were not hysteric to anoxia (Figure 3, right).

• Eutrophication in Soppensee occured at the onset of beech afforestation 
during the Bølling, it receded at the timing of cold snaps, likely because 
the lake was mixed more often by wind and seasonal overturning (Figure 
1, ~14 ka).

• A productive phase occurred before the onset of the B�lling (Figure 2 ~ 
15.8 ka), showcasing that insolation is also an important driver of produc-
tivity and Heinrich-1 was not a homogenously cold phase.

Soppensee: anoxia during WARM phases Amsoldingensee: anoxia during COLD phases

Figure 2: Gerzensee oxygen isotopes [6], Amsoldingensee record of XRF data, NGRIP dust record [7], sequentially extracted phosphorous, pollen counts, pigment data from 
hyperspectral scanning and HPLC; On the right side hyperspectral maps: RABD618 (phycocyanin); RABD667 (chlorophylls-a); RABD844 (bacteriopheophytin-a)

Figure 1: Soppensee record of XRF data, sequentially extracted phosphorous, manganese, and iron, pollen counts, pigment data from hyperspectral scanning and HPLC. 
On the left side chronozones: AO (GI-1d) Aegelsee oscillation; GO (GI-1b) Gerzensee oscillation. Laacher See tephra (LST) indicated in grey. 
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